Metamath Proof Explorer


Theorem cxpaddd

Description: Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φ A
cxpefd.2 φ A 0
cxpefd.3 φ B
cxpaddd.4 φ C
Assertion cxpaddd φ A B + C = A B A C

Proof

Step Hyp Ref Expression
1 cxp0d.1 φ A
2 cxpefd.2 φ A 0
3 cxpefd.3 φ B
4 cxpaddd.4 φ C
5 cxpadd A A 0 B C A B + C = A B A C
6 1 2 3 4 5 syl211anc φ A B + C = A B A C