Metamath Proof Explorer
		
		
		
		Description:  Sum of exponents law for complex exponentiation.  Proposition 10-4.2(a)
       of Gleason p. 135.  (Contributed by Mario Carneiro, 30-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | cxp0d.1 |  | 
					
						|  |  | cxpefd.2 |  | 
					
						|  |  | cxpefd.3 |  | 
					
						|  |  | cxpaddd.4 |  | 
				
					|  | Assertion | cxpaddd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxp0d.1 |  | 
						
							| 2 |  | cxpefd.2 |  | 
						
							| 3 |  | cxpefd.3 |  | 
						
							| 4 |  | cxpaddd.4 |  | 
						
							| 5 |  | cxpadd |  | 
						
							| 6 | 1 2 3 4 5 | syl211anc |  |