Step |
Hyp |
Ref |
Expression |
1 |
|
cxpaddle.1 |
|
2 |
|
cxpaddle.2 |
|
3 |
|
cxpaddle.3 |
|
4 |
|
cxpaddle.4 |
|
5 |
|
cxpaddle.5 |
|
6 |
|
cxpaddle.6 |
|
7 |
1 3
|
readdcld |
|
8 |
1 3 2 4
|
addge0d |
|
9 |
5
|
rpred |
|
10 |
7 8 9
|
recxpcld |
|
11 |
10
|
adantr |
|
12 |
11
|
recnd |
|
13 |
12
|
mulid2d |
|
14 |
1
|
adantr |
|
15 |
7
|
anim1i |
|
16 |
|
elrp |
|
17 |
15 16
|
sylibr |
|
18 |
14 17
|
rerpdivcld |
|
19 |
3
|
adantr |
|
20 |
19 17
|
rerpdivcld |
|
21 |
2
|
adantr |
|
22 |
7
|
adantr |
|
23 |
|
simpr |
|
24 |
|
divge0 |
|
25 |
14 21 22 23 24
|
syl22anc |
|
26 |
9
|
adantr |
|
27 |
18 25 26
|
recxpcld |
|
28 |
4
|
adantr |
|
29 |
|
divge0 |
|
30 |
19 28 22 23 29
|
syl22anc |
|
31 |
20 30 26
|
recxpcld |
|
32 |
1 3
|
addge01d |
|
33 |
4 32
|
mpbid |
|
34 |
33
|
adantr |
|
35 |
22
|
recnd |
|
36 |
35
|
mulid1d |
|
37 |
34 36
|
breqtrrd |
|
38 |
|
1red |
|
39 |
|
ledivmul |
|
40 |
14 38 22 23 39
|
syl112anc |
|
41 |
37 40
|
mpbird |
|
42 |
5
|
adantr |
|
43 |
6
|
adantr |
|
44 |
18 25 41 42 43
|
cxpaddlelem |
|
45 |
3 1
|
addge02d |
|
46 |
2 45
|
mpbid |
|
47 |
46
|
adantr |
|
48 |
47 36
|
breqtrrd |
|
49 |
|
ledivmul |
|
50 |
19 38 22 23 49
|
syl112anc |
|
51 |
48 50
|
mpbird |
|
52 |
20 30 51 42 43
|
cxpaddlelem |
|
53 |
18 20 27 31 44 52
|
le2addd |
|
54 |
14
|
recnd |
|
55 |
19
|
recnd |
|
56 |
17
|
rpne0d |
|
57 |
54 55 35 56
|
divdird |
|
58 |
35 56
|
dividd |
|
59 |
57 58
|
eqtr3d |
|
60 |
9
|
recnd |
|
61 |
60
|
adantr |
|
62 |
14 21 17 61
|
divcxpd |
|
63 |
19 28 17 61
|
divcxpd |
|
64 |
62 63
|
oveq12d |
|
65 |
1 2 9
|
recxpcld |
|
66 |
65
|
recnd |
|
67 |
66
|
adantr |
|
68 |
3 4 9
|
recxpcld |
|
69 |
68
|
recnd |
|
70 |
69
|
adantr |
|
71 |
17 26
|
rpcxpcld |
|
72 |
71
|
rpne0d |
|
73 |
67 70 12 72
|
divdird |
|
74 |
64 73
|
eqtr4d |
|
75 |
53 59 74
|
3brtr3d |
|
76 |
65 68
|
readdcld |
|
77 |
76
|
adantr |
|
78 |
38 77 71
|
lemuldivd |
|
79 |
75 78
|
mpbird |
|
80 |
13 79
|
eqbrtrrd |
|
81 |
5
|
rpne0d |
|
82 |
60 81
|
0cxpd |
|
83 |
1 2 9
|
cxpge0d |
|
84 |
3 4 9
|
cxpge0d |
|
85 |
65 68 83 84
|
addge0d |
|
86 |
82 85
|
eqbrtrd |
|
87 |
|
oveq1 |
|
88 |
87
|
breq1d |
|
89 |
86 88
|
syl5ibcom |
|
90 |
89
|
imp |
|
91 |
|
0re |
|
92 |
|
leloe |
|
93 |
91 7 92
|
sylancr |
|
94 |
8 93
|
mpbid |
|
95 |
80 90 94
|
mpjaodan |
|