Metamath Proof Explorer


Theorem cxpaddlelem

Description: Lemma for cxpaddle . (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Hypotheses cxpaddlelem.1 φ A
cxpaddlelem.2 φ 0 A
cxpaddlelem.3 φ A 1
cxpaddlelem.4 φ B +
cxpaddlelem.5 φ B 1
Assertion cxpaddlelem φ A A B

Proof

Step Hyp Ref Expression
1 cxpaddlelem.1 φ A
2 cxpaddlelem.2 φ 0 A
3 cxpaddlelem.3 φ A 1
4 cxpaddlelem.4 φ B +
5 cxpaddlelem.5 φ B 1
6 1re 1
7 4 rpred φ B
8 resubcl 1 B 1 B
9 6 7 8 sylancr φ 1 B
10 1 2 9 recxpcld φ A 1 B
11 10 adantr φ 0 < A A 1 B
12 1red φ 0 < A 1
13 recxpcl A 0 A B A B
14 cxpge0 A 0 A B 0 A B
15 13 14 jca A 0 A B A B 0 A B
16 1 2 7 15 syl3anc φ A B 0 A B
17 16 adantr φ 0 < A A B 0 A B
18 3 ad2antrr φ 0 < A B < 1 A 1
19 1 ad2antrr φ 0 < A B < 1 A
20 2 ad2antrr φ 0 < A B < 1 0 A
21 1red φ 0 < A B < 1 1
22 0le1 0 1
23 22 a1i φ 0 < A B < 1 0 1
24 difrp B 1 B < 1 1 B +
25 7 6 24 sylancl φ B < 1 1 B +
26 25 adantr φ 0 < A B < 1 1 B +
27 26 biimpa φ 0 < A B < 1 1 B +
28 19 20 21 23 27 cxple2d φ 0 < A B < 1 A 1 A 1 B 1 1 B
29 18 28 mpbid φ 0 < A B < 1 A 1 B 1 1 B
30 9 recnd φ 1 B
31 30 1cxpd φ 1 1 B = 1
32 31 ad2antrr φ 0 < A B < 1 1 1 B = 1
33 29 32 breqtrd φ 0 < A B < 1 A 1 B 1
34 simpr φ 0 < A B = 1 B = 1
35 34 oveq2d φ 0 < A B = 1 1 B = 1 1
36 1m1e0 1 1 = 0
37 35 36 eqtrdi φ 0 < A B = 1 1 B = 0
38 37 oveq2d φ 0 < A B = 1 A 1 B = A 0
39 1 recnd φ A
40 39 ad2antrr φ 0 < A B = 1 A
41 40 cxp0d φ 0 < A B = 1 A 0 = 1
42 38 41 eqtrd φ 0 < A B = 1 A 1 B = 1
43 1le1 1 1
44 42 43 eqbrtrdi φ 0 < A B = 1 A 1 B 1
45 leloe B 1 B 1 B < 1 B = 1
46 7 6 45 sylancl φ B 1 B < 1 B = 1
47 5 46 mpbid φ B < 1 B = 1
48 47 adantr φ 0 < A B < 1 B = 1
49 33 44 48 mpjaodan φ 0 < A A 1 B 1
50 lemul1a A 1 B 1 A B 0 A B A 1 B 1 A 1 B A B 1 A B
51 11 12 17 49 50 syl31anc φ 0 < A A 1 B A B 1 A B
52 ax-1cn 1
53 7 recnd φ B
54 npcan 1 B 1 - B + B = 1
55 52 53 54 sylancr φ 1 - B + B = 1
56 55 adantr φ 0 < A 1 - B + B = 1
57 56 oveq2d φ 0 < A A 1 - B + B = A 1
58 39 adantr φ 0 < A A
59 1 anim1i φ 0 < A A 0 < A
60 elrp A + A 0 < A
61 59 60 sylibr φ 0 < A A +
62 61 rpne0d φ 0 < A A 0
63 30 adantr φ 0 < A 1 B
64 53 adantr φ 0 < A B
65 58 62 63 64 cxpaddd φ 0 < A A 1 - B + B = A 1 B A B
66 39 cxp1d φ A 1 = A
67 66 adantr φ 0 < A A 1 = A
68 57 65 67 3eqtr3d φ 0 < A A 1 B A B = A
69 39 53 cxpcld φ A B
70 69 mulid2d φ 1 A B = A B
71 70 adantr φ 0 < A 1 A B = A B
72 51 68 71 3brtr3d φ 0 < A A A B
73 1 2 7 cxpge0d φ 0 A B
74 breq1 0 = A 0 A B A A B
75 73 74 syl5ibcom φ 0 = A A A B
76 75 imp φ 0 = A A A B
77 0re 0
78 leloe 0 A 0 A 0 < A 0 = A
79 77 1 78 sylancr φ 0 A 0 < A 0 = A
80 2 79 mpbid φ 0 < A 0 = A
81 72 76 80 mpjaodan φ A A B