Step |
Hyp |
Ref |
Expression |
1 |
|
cxpaddlelem.1 |
|
2 |
|
cxpaddlelem.2 |
|
3 |
|
cxpaddlelem.3 |
|
4 |
|
cxpaddlelem.4 |
|
5 |
|
cxpaddlelem.5 |
|
6 |
|
1re |
|
7 |
4
|
rpred |
|
8 |
|
resubcl |
|
9 |
6 7 8
|
sylancr |
|
10 |
1 2 9
|
recxpcld |
|
11 |
10
|
adantr |
|
12 |
|
1red |
|
13 |
|
recxpcl |
|
14 |
|
cxpge0 |
|
15 |
13 14
|
jca |
|
16 |
1 2 7 15
|
syl3anc |
|
17 |
16
|
adantr |
|
18 |
3
|
ad2antrr |
|
19 |
1
|
ad2antrr |
|
20 |
2
|
ad2antrr |
|
21 |
|
1red |
|
22 |
|
0le1 |
|
23 |
22
|
a1i |
|
24 |
|
difrp |
|
25 |
7 6 24
|
sylancl |
|
26 |
25
|
adantr |
|
27 |
26
|
biimpa |
|
28 |
19 20 21 23 27
|
cxple2d |
|
29 |
18 28
|
mpbid |
|
30 |
9
|
recnd |
|
31 |
30
|
1cxpd |
|
32 |
31
|
ad2antrr |
|
33 |
29 32
|
breqtrd |
|
34 |
|
simpr |
|
35 |
34
|
oveq2d |
|
36 |
|
1m1e0 |
|
37 |
35 36
|
eqtrdi |
|
38 |
37
|
oveq2d |
|
39 |
1
|
recnd |
|
40 |
39
|
ad2antrr |
|
41 |
40
|
cxp0d |
|
42 |
38 41
|
eqtrd |
|
43 |
|
1le1 |
|
44 |
42 43
|
eqbrtrdi |
|
45 |
|
leloe |
|
46 |
7 6 45
|
sylancl |
|
47 |
5 46
|
mpbid |
|
48 |
47
|
adantr |
|
49 |
33 44 48
|
mpjaodan |
|
50 |
|
lemul1a |
|
51 |
11 12 17 49 50
|
syl31anc |
|
52 |
|
ax-1cn |
|
53 |
7
|
recnd |
|
54 |
|
npcan |
|
55 |
52 53 54
|
sylancr |
|
56 |
55
|
adantr |
|
57 |
56
|
oveq2d |
|
58 |
39
|
adantr |
|
59 |
1
|
anim1i |
|
60 |
|
elrp |
|
61 |
59 60
|
sylibr |
|
62 |
61
|
rpne0d |
|
63 |
30
|
adantr |
|
64 |
53
|
adantr |
|
65 |
58 62 63 64
|
cxpaddd |
|
66 |
39
|
cxp1d |
|
67 |
66
|
adantr |
|
68 |
57 65 67
|
3eqtr3d |
|
69 |
39 53
|
cxpcld |
|
70 |
69
|
mulid2d |
|
71 |
70
|
adantr |
|
72 |
51 68 71
|
3brtr3d |
|
73 |
1 2 7
|
cxpge0d |
|
74 |
|
breq1 |
|
75 |
73 74
|
syl5ibcom |
|
76 |
75
|
imp |
|
77 |
|
0re |
|
78 |
|
leloe |
|
79 |
77 1 78
|
sylancr |
|
80 |
2 79
|
mpbid |
|
81 |
72 76 80
|
mpjaodan |
|