Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
cxpcl
Next ⟩
recxpcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
cxpcl
Description:
Closure of the complex power function.
(Contributed by
Mario Carneiro
, 2-Aug-2014)
Ref
Expression
Assertion
cxpcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
cxpval
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
=
if
A
=
0
if
B
=
0
1
0
e
B
⁢
log
⁡
A
2
ax-1cn
⊢
1
∈
ℂ
3
0cn
⊢
0
∈
ℂ
4
2
3
ifcli
⊢
if
B
=
0
1
0
∈
ℂ
5
4
a1i
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
A
=
0
→
if
B
=
0
1
0
∈
ℂ
6
df-ne
⊢
A
≠
0
↔
¬
A
=
0
7
id
⊢
B
∈
ℂ
→
B
∈
ℂ
8
logcl
⊢
A
∈
ℂ
∧
A
≠
0
→
log
⁡
A
∈
ℂ
9
mulcl
⊢
B
∈
ℂ
∧
log
⁡
A
∈
ℂ
→
B
⁢
log
⁡
A
∈
ℂ
10
7
8
9
syl2anr
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
→
B
⁢
log
⁡
A
∈
ℂ
11
10
an32s
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
A
≠
0
→
B
⁢
log
⁡
A
∈
ℂ
12
efcl
⊢
B
⁢
log
⁡
A
∈
ℂ
→
e
B
⁢
log
⁡
A
∈
ℂ
13
11
12
syl
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
A
≠
0
→
e
B
⁢
log
⁡
A
∈
ℂ
14
6
13
sylan2br
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
¬
A
=
0
→
e
B
⁢
log
⁡
A
∈
ℂ
15
5
14
ifclda
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
if
A
=
0
if
B
=
0
1
0
e
B
⁢
log
⁡
A
∈
ℂ
16
1
15
eqeltrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
∈
ℂ