Metamath Proof Explorer


Theorem cxpcl

Description: Closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpcl A B A B

Proof

Step Hyp Ref Expression
1 cxpval A B A B = if A = 0 if B = 0 1 0 e B log A
2 ax-1cn 1
3 0cn 0
4 2 3 ifcli if B = 0 1 0
5 4 a1i A B A = 0 if B = 0 1 0
6 df-ne A 0 ¬ A = 0
7 id B B
8 logcl A A 0 log A
9 mulcl B log A B log A
10 7 8 9 syl2anr A A 0 B B log A
11 10 an32s A B A 0 B log A
12 efcl B log A e B log A
13 11 12 syl A B A 0 e B log A
14 6 13 sylan2br A B ¬ A = 0 e B log A
15 5 14 ifclda A B if A = 0 if B = 0 1 0 e B log A
16 1 15 eqeltrd A B A B