Metamath Proof Explorer


Theorem cxpcn

Description: Domain of continuity of the complex power function. (Contributed by Mario Carneiro, 1-May-2016)

Ref Expression
Hypotheses cxpcn.d D = −∞ 0
cxpcn.j J = TopOpen fld
cxpcn.k K = J 𝑡 D
Assertion cxpcn x D , y x y K × t J Cn J

Proof

Step Hyp Ref Expression
1 cxpcn.d D = −∞ 0
2 cxpcn.j J = TopOpen fld
3 cxpcn.k K = J 𝑡 D
4 1 ellogdm x D x x x +
5 4 simplbi x D x
6 5 adantr x D y x
7 1 logdmn0 x D x 0
8 7 adantr x D y x 0
9 simpr x D y y
10 6 8 9 cxpefd x D y x y = e y log x
11 10 mpoeq3ia x D , y x y = x D , y e y log x
12 2 cnfldtopon J TopOn
13 12 a1i J TopOn
14 5 ssriv D
15 resttopon J TopOn D J 𝑡 D TopOn D
16 13 14 15 sylancl J 𝑡 D TopOn D
17 3 16 eqeltrid K TopOn D
18 17 13 cnmpt2nd x D , y y K × t J Cn J
19 fvres x D log D x = log x
20 19 adantr x D y log D x = log x
21 20 mpoeq3ia x D , y log D x = x D , y log x
22 17 13 cnmpt1st x D , y x K × t J Cn K
23 1 logcn log D : D cn
24 ssid
25 12 toponrestid J = J 𝑡
26 2 3 25 cncfcn D D cn = K Cn J
27 14 24 26 mp2an D cn = K Cn J
28 23 27 eleqtri log D K Cn J
29 28 a1i log D K Cn J
30 17 13 22 29 cnmpt21f x D , y log D x K × t J Cn J
31 21 30 eqeltrrid x D , y log x K × t J Cn J
32 2 mulcn × J × t J Cn J
33 32 a1i × J × t J Cn J
34 17 13 18 31 33 cnmpt22f x D , y y log x K × t J Cn J
35 efcn exp : cn
36 2 cncfcn1 cn = J Cn J
37 35 36 eleqtri exp J Cn J
38 37 a1i exp J Cn J
39 17 13 34 38 cnmpt21f x D , y e y log x K × t J Cn J
40 39 mptru x D , y e y log x K × t J Cn J
41 11 40 eqeltri x D , y x y K × t J Cn J