Metamath Proof Explorer


Theorem cxpcn3

Description: Extend continuity of the complex power function to a base of zero, as long as the exponent has strictly positive real part. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses cxpcn3.d D = -1 +
cxpcn3.j J = TopOpen fld
cxpcn3.k K = J 𝑡 0 +∞
cxpcn3.l L = J 𝑡 D
Assertion cxpcn3 x 0 +∞ , y D x y K × t L Cn J

Proof

Step Hyp Ref Expression
1 cxpcn3.d D = -1 +
2 cxpcn3.j J = TopOpen fld
3 cxpcn3.k K = J 𝑡 0 +∞
4 cxpcn3.l L = J 𝑡 D
5 rge0ssre 0 +∞
6 ax-resscn
7 5 6 sstri 0 +∞
8 7 sseli x 0 +∞ x
9 cnvimass -1 + dom
10 ref :
11 10 fdmi dom =
12 9 11 sseqtri -1 +
13 1 12 eqsstri D
14 13 sseli y D y
15 cxpcl x y x y
16 8 14 15 syl2an x 0 +∞ y D x y
17 16 rgen2 x 0 +∞ y D x y
18 eqid x 0 +∞ , y D x y = x 0 +∞ , y D x y
19 18 fmpo x 0 +∞ y D x y x 0 +∞ , y D x y : 0 +∞ × D
20 17 19 mpbi x 0 +∞ , y D x y : 0 +∞ × D
21 2 cnfldtopon J TopOn
22 rpre x + x
23 rpge0 x + 0 x
24 elrege0 x 0 +∞ x 0 x
25 22 23 24 sylanbrc x + x 0 +∞
26 25 ssriv + 0 +∞
27 26 7 sstri +
28 resttopon J TopOn + J 𝑡 + TopOn +
29 21 27 28 mp2an J 𝑡 + TopOn +
30 29 toponrestid J 𝑡 + = J 𝑡 + 𝑡 +
31 29 a1i u 0 +∞ v D 0 < u J 𝑡 + TopOn +
32 ssid + +
33 32 a1i u 0 +∞ v D 0 < u + +
34 21 a1i u 0 +∞ v D 0 < u J TopOn
35 13 a1i u 0 +∞ v D 0 < u D
36 eqid J 𝑡 + = J 𝑡 +
37 2 36 cxpcn2 x + , y x y J 𝑡 + × t J Cn J
38 37 a1i u 0 +∞ v D 0 < u x + , y x y J 𝑡 + × t J Cn J
39 30 31 33 4 34 35 38 cnmpt2res u 0 +∞ v D 0 < u x + , y D x y J 𝑡 + × t L Cn J
40 elrege0 u 0 +∞ u 0 u
41 40 simplbi u 0 +∞ u
42 41 adantr u 0 +∞ v D u
43 42 adantr u 0 +∞ v D 0 < u u
44 simpr u 0 +∞ v D 0 < u 0 < u
45 43 44 elrpd u 0 +∞ v D 0 < u u +
46 simplr u 0 +∞ v D 0 < u v D
47 45 46 opelxpd u 0 +∞ v D 0 < u u v + × D
48 resttopon J TopOn D J 𝑡 D TopOn D
49 21 13 48 mp2an J 𝑡 D TopOn D
50 4 49 eqeltri L TopOn D
51 txtopon J 𝑡 + TopOn + L TopOn D J 𝑡 + × t L TopOn + × D
52 29 50 51 mp2an J 𝑡 + × t L TopOn + × D
53 52 toponunii + × D = J 𝑡 + × t L
54 53 cncnpi x + , y D x y J 𝑡 + × t L Cn J u v + × D x + , y D x y J 𝑡 + × t L CnP J u v
55 39 47 54 syl2anc u 0 +∞ v D 0 < u x + , y D x y J 𝑡 + × t L CnP J u v
56 ssid D D
57 resmpo + 0 +∞ D D x 0 +∞ , y D x y + × D = x + , y D x y
58 26 56 57 mp2an x 0 +∞ , y D x y + × D = x + , y D x y
59 resttopon J TopOn 0 +∞ J 𝑡 0 +∞ TopOn 0 +∞
60 21 7 59 mp2an J 𝑡 0 +∞ TopOn 0 +∞
61 3 60 eqeltri K TopOn 0 +∞
62 ioorp 0 +∞ = +
63 iooretop 0 +∞ topGen ran .
64 62 63 eqeltrri + topGen ran .
65 retop topGen ran . Top
66 ovex 0 +∞ V
67 restopnb topGen ran . Top 0 +∞ V + topGen ran . + 0 +∞ + + + topGen ran . + topGen ran . 𝑡 0 +∞
68 65 66 67 mpanl12 + topGen ran . + 0 +∞ + + + topGen ran . + topGen ran . 𝑡 0 +∞
69 64 26 32 68 mp3an + topGen ran . + topGen ran . 𝑡 0 +∞
70 64 69 mpbi + topGen ran . 𝑡 0 +∞
71 eqid topGen ran . = topGen ran .
72 2 71 rerest 0 +∞ J 𝑡 0 +∞ = topGen ran . 𝑡 0 +∞
73 5 72 ax-mp J 𝑡 0 +∞ = topGen ran . 𝑡 0 +∞
74 3 73 eqtri K = topGen ran . 𝑡 0 +∞
75 70 74 eleqtrri + K
76 toponmax L TopOn D D L
77 50 76 ax-mp D L
78 txrest K TopOn 0 +∞ L TopOn D + K D L K × t L 𝑡 + × D = K 𝑡 + × t L 𝑡 D
79 61 50 75 77 78 mp4an K × t L 𝑡 + × D = K 𝑡 + × t L 𝑡 D
80 3 oveq1i K 𝑡 + = J 𝑡 0 +∞ 𝑡 +
81 restabs J TopOn + 0 +∞ 0 +∞ V J 𝑡 0 +∞ 𝑡 + = J 𝑡 +
82 21 26 66 81 mp3an J 𝑡 0 +∞ 𝑡 + = J 𝑡 +
83 80 82 eqtri K 𝑡 + = J 𝑡 +
84 50 toponunii D = L
85 84 restid L TopOn D L 𝑡 D = L
86 50 85 ax-mp L 𝑡 D = L
87 83 86 oveq12i K 𝑡 + × t L 𝑡 D = J 𝑡 + × t L
88 79 87 eqtri K × t L 𝑡 + × D = J 𝑡 + × t L
89 88 oveq1i K × t L 𝑡 + × D CnP J = J 𝑡 + × t L CnP J
90 89 fveq1i K × t L 𝑡 + × D CnP J u v = J 𝑡 + × t L CnP J u v
91 55 58 90 3eltr4g u 0 +∞ v D 0 < u x 0 +∞ , y D x y + × D K × t L 𝑡 + × D CnP J u v
92 txtopon K TopOn 0 +∞ L TopOn D K × t L TopOn 0 +∞ × D
93 61 50 92 mp2an K × t L TopOn 0 +∞ × D
94 93 topontopi K × t L Top
95 94 a1i u 0 +∞ v D 0 < u K × t L Top
96 xpss1 + 0 +∞ + × D 0 +∞ × D
97 26 96 mp1i u 0 +∞ v D 0 < u + × D 0 +∞ × D
98 txopn K TopOn 0 +∞ L TopOn D + K D L + × D K × t L
99 61 50 75 77 98 mp4an + × D K × t L
100 isopn3i K × t L Top + × D K × t L int K × t L + × D = + × D
101 94 99 100 mp2an int K × t L + × D = + × D
102 47 101 eleqtrrdi u 0 +∞ v D 0 < u u v int K × t L + × D
103 20 a1i u 0 +∞ v D 0 < u x 0 +∞ , y D x y : 0 +∞ × D
104 61 topontopi K Top
105 50 topontopi L Top
106 61 toponunii 0 +∞ = K
107 104 105 106 84 txunii 0 +∞ × D = K × t L
108 21 toponunii = J
109 107 108 cnprest K × t L Top + × D 0 +∞ × D u v int K × t L + × D x 0 +∞ , y D x y : 0 +∞ × D x 0 +∞ , y D x y K × t L CnP J u v x 0 +∞ , y D x y + × D K × t L 𝑡 + × D CnP J u v
110 95 97 102 103 109 syl22anc u 0 +∞ v D 0 < u x 0 +∞ , y D x y K × t L CnP J u v x 0 +∞ , y D x y + × D K × t L 𝑡 + × D CnP J u v
111 91 110 mpbird u 0 +∞ v D 0 < u x 0 +∞ , y D x y K × t L CnP J u v
112 20 a1i v D x 0 +∞ , y D x y : 0 +∞ × D
113 eqid if v 1 v 1 2 = if v 1 v 1 2
114 eqid if if v 1 v 1 2 e 1 if v 1 v 1 2 if v 1 v 1 2 e 1 if v 1 v 1 2 = if if v 1 v 1 2 e 1 if v 1 v 1 2 if v 1 v 1 2 e 1 if v 1 v 1 2
115 1 2 3 4 113 114 cxpcn3lem v D e + d + a 0 +∞ b D a < d v b < d a b < e
116 115 ralrimiva v D e + d + a 0 +∞ b D a < d v b < d a b < e
117 0e0icopnf 0 0 +∞
118 117 a1i v D a 0 +∞ b D 0 0 +∞
119 simprl v D a 0 +∞ b D a 0 +∞
120 118 119 ovresd v D a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a = 0 abs a
121 0cn 0
122 7 119 sseldi v D a 0 +∞ b D a
123 eqid abs = abs
124 123 cnmetdval 0 a 0 abs a = 0 a
125 121 122 124 sylancr v D a 0 +∞ b D 0 abs a = 0 a
126 df-neg a = 0 a
127 126 fveq2i a = 0 a
128 122 absnegd v D a 0 +∞ b D a = a
129 127 128 syl5eqr v D a 0 +∞ b D 0 a = a
130 120 125 129 3eqtrd v D a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a = a
131 130 breq1d v D a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a < d a < d
132 simpl v D a 0 +∞ b D v D
133 simprr v D a 0 +∞ b D b D
134 132 133 ovresd v D a 0 +∞ b D v abs D × D b = v abs b
135 13 132 sseldi v D a 0 +∞ b D v
136 13 133 sseldi v D a 0 +∞ b D b
137 123 cnmetdval v b v abs b = v b
138 135 136 137 syl2anc v D a 0 +∞ b D v abs b = v b
139 134 138 eqtrd v D a 0 +∞ b D v abs D × D b = v b
140 139 breq1d v D a 0 +∞ b D v abs D × D b < d v b < d
141 131 140 anbi12d v D a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a < d v abs D × D b < d a < d v b < d
142 oveq12 x = 0 y = v x y = 0 v
143 ovex 0 v V
144 142 18 143 ovmpoa 0 0 +∞ v D 0 x 0 +∞ , y D x y v = 0 v
145 117 132 144 sylancr v D a 0 +∞ b D 0 x 0 +∞ , y D x y v = 0 v
146 1 eleq2i v D v -1 +
147 ffn : Fn
148 elpreima Fn v -1 + v v +
149 10 147 148 mp2b v -1 + v v +
150 146 149 bitri v D v v +
151 150 simplbi v D v
152 150 simprbi v D v +
153 152 rpne0d v D v 0
154 fveq2 v = 0 v = 0
155 re0 0 = 0
156 154 155 syl6eq v = 0 v = 0
157 156 necon3i v 0 v 0
158 153 157 syl v D v 0
159 151 158 0cxpd v D 0 v = 0
160 159 adantr v D a 0 +∞ b D 0 v = 0
161 145 160 eqtrd v D a 0 +∞ b D 0 x 0 +∞ , y D x y v = 0
162 oveq12 x = a y = b x y = a b
163 ovex a b V
164 162 18 163 ovmpoa a 0 +∞ b D a x 0 +∞ , y D x y b = a b
165 164 adantl v D a 0 +∞ b D a x 0 +∞ , y D x y b = a b
166 161 165 oveq12d v D a 0 +∞ b D 0 x 0 +∞ , y D x y v abs a x 0 +∞ , y D x y b = 0 abs a b
167 122 136 cxpcld v D a 0 +∞ b D a b
168 123 cnmetdval 0 a b 0 abs a b = 0 a b
169 121 167 168 sylancr v D a 0 +∞ b D 0 abs a b = 0 a b
170 df-neg a b = 0 a b
171 170 fveq2i a b = 0 a b
172 167 absnegd v D a 0 +∞ b D a b = a b
173 171 172 syl5eqr v D a 0 +∞ b D 0 a b = a b
174 166 169 173 3eqtrd v D a 0 +∞ b D 0 x 0 +∞ , y D x y v abs a x 0 +∞ , y D x y b = a b
175 174 breq1d v D a 0 +∞ b D 0 x 0 +∞ , y D x y v abs a x 0 +∞ , y D x y b < e a b < e
176 141 175 imbi12d v D a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a < d v abs D × D b < d 0 x 0 +∞ , y D x y v abs a x 0 +∞ , y D x y b < e a < d v b < d a b < e
177 176 2ralbidva v D a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a < d v abs D × D b < d 0 x 0 +∞ , y D x y v abs a x 0 +∞ , y D x y b < e a 0 +∞ b D a < d v b < d a b < e
178 177 rexbidv v D d + a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a < d v abs D × D b < d 0 x 0 +∞ , y D x y v abs a x 0 +∞ , y D x y b < e d + a 0 +∞ b D a < d v b < d a b < e
179 178 ralbidv v D e + d + a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a < d v abs D × D b < d 0 x 0 +∞ , y D x y v abs a x 0 +∞ , y D x y b < e e + d + a 0 +∞ b D a < d v b < d a b < e
180 116 179 mpbird v D e + d + a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a < d v abs D × D b < d 0 x 0 +∞ , y D x y v abs a x 0 +∞ , y D x y b < e
181 cnxmet abs ∞Met
182 181 a1i v D abs ∞Met
183 xmetres2 abs ∞Met 0 +∞ abs 0 +∞ × 0 +∞ ∞Met 0 +∞
184 182 7 183 sylancl v D abs 0 +∞ × 0 +∞ ∞Met 0 +∞
185 xmetres2 abs ∞Met D abs D × D ∞Met D
186 182 13 185 sylancl v D abs D × D ∞Met D
187 117 a1i v D 0 0 +∞
188 id v D v D
189 eqid abs 0 +∞ × 0 +∞ = abs 0 +∞ × 0 +∞
190 2 cnfldtopn J = MetOpen abs
191 eqid MetOpen abs 0 +∞ × 0 +∞ = MetOpen abs 0 +∞ × 0 +∞
192 189 190 191 metrest abs ∞Met 0 +∞ J 𝑡 0 +∞ = MetOpen abs 0 +∞ × 0 +∞
193 181 7 192 mp2an J 𝑡 0 +∞ = MetOpen abs 0 +∞ × 0 +∞
194 3 193 eqtri K = MetOpen abs 0 +∞ × 0 +∞
195 eqid abs D × D = abs D × D
196 eqid MetOpen abs D × D = MetOpen abs D × D
197 195 190 196 metrest abs ∞Met D J 𝑡 D = MetOpen abs D × D
198 181 13 197 mp2an J 𝑡 D = MetOpen abs D × D
199 4 198 eqtri L = MetOpen abs D × D
200 194 199 190 txmetcnp abs 0 +∞ × 0 +∞ ∞Met 0 +∞ abs D × D ∞Met D abs ∞Met 0 0 +∞ v D x 0 +∞ , y D x y K × t L CnP J 0 v x 0 +∞ , y D x y : 0 +∞ × D e + d + a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a < d v abs D × D b < d 0 x 0 +∞ , y D x y v abs a x 0 +∞ , y D x y b < e
201 184 186 182 187 188 200 syl32anc v D x 0 +∞ , y D x y K × t L CnP J 0 v x 0 +∞ , y D x y : 0 +∞ × D e + d + a 0 +∞ b D 0 abs 0 +∞ × 0 +∞ a < d v abs D × D b < d 0 x 0 +∞ , y D x y v abs a x 0 +∞ , y D x y b < e
202 112 180 201 mpbir2and v D x 0 +∞ , y D x y K × t L CnP J 0 v
203 202 ad2antlr u 0 +∞ v D 0 = u x 0 +∞ , y D x y K × t L CnP J 0 v
204 simpr u 0 +∞ v D 0 = u 0 = u
205 204 opeq1d u 0 +∞ v D 0 = u 0 v = u v
206 205 fveq2d u 0 +∞ v D 0 = u K × t L CnP J 0 v = K × t L CnP J u v
207 203 206 eleqtrd u 0 +∞ v D 0 = u x 0 +∞ , y D x y K × t L CnP J u v
208 40 simprbi u 0 +∞ 0 u
209 208 adantr u 0 +∞ v D 0 u
210 0re 0
211 leloe 0 u 0 u 0 < u 0 = u
212 210 42 211 sylancr u 0 +∞ v D 0 u 0 < u 0 = u
213 209 212 mpbid u 0 +∞ v D 0 < u 0 = u
214 111 207 213 mpjaodan u 0 +∞ v D x 0 +∞ , y D x y K × t L CnP J u v
215 214 rgen2 u 0 +∞ v D x 0 +∞ , y D x y K × t L CnP J u v
216 fveq2 z = u v K × t L CnP J z = K × t L CnP J u v
217 216 eleq2d z = u v x 0 +∞ , y D x y K × t L CnP J z x 0 +∞ , y D x y K × t L CnP J u v
218 217 ralxp z 0 +∞ × D x 0 +∞ , y D x y K × t L CnP J z u 0 +∞ v D x 0 +∞ , y D x y K × t L CnP J u v
219 215 218 mpbir z 0 +∞ × D x 0 +∞ , y D x y K × t L CnP J z
220 cncnp K × t L TopOn 0 +∞ × D J TopOn x 0 +∞ , y D x y K × t L Cn J x 0 +∞ , y D x y : 0 +∞ × D z 0 +∞ × D x 0 +∞ , y D x y K × t L CnP J z
221 93 21 220 mp2an x 0 +∞ , y D x y K × t L Cn J x 0 +∞ , y D x y : 0 +∞ × D z 0 +∞ × D x 0 +∞ , y D x y K × t L CnP J z
222 20 219 221 mpbir2an x 0 +∞ , y D x y K × t L Cn J