Step |
Hyp |
Ref |
Expression |
1 |
|
cxpcn3.d |
|
2 |
|
cxpcn3.j |
|
3 |
|
cxpcn3.k |
|
4 |
|
cxpcn3.l |
|
5 |
|
cxpcn3.u |
|
6 |
|
cxpcn3.t |
|
7 |
1
|
eleq2i |
|
8 |
|
ref |
|
9 |
|
ffn |
|
10 |
|
elpreima |
|
11 |
8 9 10
|
mp2b |
|
12 |
7 11
|
bitri |
|
13 |
12
|
simprbi |
|
14 |
13
|
adantr |
|
15 |
|
1rp |
|
16 |
|
ifcl |
|
17 |
14 15 16
|
sylancl |
|
18 |
17
|
rphalfcld |
|
19 |
5 18
|
eqeltrid |
|
20 |
|
simpr |
|
21 |
19
|
rpreccld |
|
22 |
21
|
rpred |
|
23 |
20 22
|
rpcxpcld |
|
24 |
19 23
|
ifcld |
|
25 |
6 24
|
eqeltrid |
|
26 |
|
elrege0 |
|
27 |
|
0red |
|
28 |
|
leloe |
|
29 |
27 28
|
sylan |
|
30 |
|
elrp |
|
31 |
|
simp2l |
|
32 |
|
simp2r |
|
33 |
|
cnvimass |
|
34 |
8
|
fdmi |
|
35 |
33 34
|
sseqtri |
|
36 |
1 35
|
eqsstri |
|
37 |
36
|
sseli |
|
38 |
32 37
|
syl |
|
39 |
|
abscxp |
|
40 |
31 38 39
|
syl2anc |
|
41 |
38
|
recld |
|
42 |
31 41
|
rpcxpcld |
|
43 |
42
|
rpred |
|
44 |
19
|
3ad2ant1 |
|
45 |
44
|
rpred |
|
46 |
31 45
|
rpcxpcld |
|
47 |
46
|
rpred |
|
48 |
|
simp1r |
|
49 |
48
|
rpred |
|
50 |
|
simp1l |
|
51 |
12
|
simplbi |
|
52 |
50 51
|
syl |
|
53 |
52
|
recld |
|
54 |
53
|
rehalfcld |
|
55 |
|
1re |
|
56 |
|
min1 |
|
57 |
53 55 56
|
sylancl |
|
58 |
17
|
3ad2ant1 |
|
59 |
58
|
rpred |
|
60 |
|
2re |
|
61 |
60
|
a1i |
|
62 |
|
2pos |
|
63 |
62
|
a1i |
|
64 |
|
lediv1 |
|
65 |
59 53 61 63 64
|
syl112anc |
|
66 |
57 65
|
mpbid |
|
67 |
5 66
|
eqbrtrid |
|
68 |
53
|
recnd |
|
69 |
68
|
2halvesd |
|
70 |
52 38
|
resubd |
|
71 |
52 38
|
subcld |
|
72 |
71
|
recld |
|
73 |
71
|
abscld |
|
74 |
71
|
releabsd |
|
75 |
|
simp3r |
|
76 |
75 6
|
breqtrdi |
|
77 |
23
|
3ad2ant1 |
|
78 |
77
|
rpred |
|
79 |
|
ltmin |
|
80 |
73 45 78 79
|
syl3anc |
|
81 |
76 80
|
mpbid |
|
82 |
81
|
simpld |
|
83 |
72 73 45 74 82
|
lelttrd |
|
84 |
72 45 54 83 67
|
ltletrd |
|
85 |
70 84
|
eqbrtrrd |
|
86 |
53 41 54
|
ltsubadd2d |
|
87 |
85 86
|
mpbid |
|
88 |
69 87
|
eqbrtrd |
|
89 |
54 41 54
|
ltadd1d |
|
90 |
88 89
|
mpbird |
|
91 |
45 54 41 67 90
|
lelttrd |
|
92 |
31
|
rpred |
|
93 |
55
|
a1i |
|
94 |
31
|
rprege0d |
|
95 |
|
absid |
|
96 |
94 95
|
syl |
|
97 |
|
simp3l |
|
98 |
96 97
|
eqbrtrrd |
|
99 |
98 6
|
breqtrdi |
|
100 |
|
ltmin |
|
101 |
92 45 78 100
|
syl3anc |
|
102 |
99 101
|
mpbid |
|
103 |
102
|
simpld |
|
104 |
|
rehalfcl |
|
105 |
55 104
|
mp1i |
|
106 |
|
min2 |
|
107 |
53 55 106
|
sylancl |
|
108 |
|
lediv1 |
|
109 |
59 93 61 63 108
|
syl112anc |
|
110 |
107 109
|
mpbid |
|
111 |
5 110
|
eqbrtrid |
|
112 |
|
halflt1 |
|
113 |
112
|
a1i |
|
114 |
45 105 93 111 113
|
lelttrd |
|
115 |
92 45 93 103 114
|
lttrd |
|
116 |
31 45 115 41
|
cxplt3d |
|
117 |
91 116
|
mpbid |
|
118 |
44
|
rpcnne0d |
|
119 |
|
recid |
|
120 |
118 119
|
syl |
|
121 |
120
|
oveq2d |
|
122 |
44
|
rpreccld |
|
123 |
122
|
rpcnd |
|
124 |
31 45 123
|
cxpmuld |
|
125 |
31
|
rpcnd |
|
126 |
125
|
cxp1d |
|
127 |
121 124 126
|
3eqtr3d |
|
128 |
102
|
simprd |
|
129 |
127 128
|
eqbrtrd |
|
130 |
46
|
rprege0d |
|
131 |
48
|
rprege0d |
|
132 |
|
cxplt2 |
|
133 |
130 131 122 132
|
syl3anc |
|
134 |
129 133
|
mpbird |
|
135 |
43 47 49 117 134
|
lttrd |
|
136 |
40 135
|
eqbrtrd |
|
137 |
136
|
3expia |
|
138 |
137
|
anassrs |
|
139 |
138
|
ralrimiva |
|
140 |
30 139
|
sylan2br |
|
141 |
140
|
expr |
|
142 |
|
elpreima |
|
143 |
8 9 142
|
mp2b |
|
144 |
143
|
simprbi |
|
145 |
144 1
|
eleq2s |
|
146 |
145
|
rpne0d |
|
147 |
|
fveq2 |
|
148 |
|
re0 |
|
149 |
147 148
|
eqtrdi |
|
150 |
149
|
necon3i |
|
151 |
146 150
|
syl |
|
152 |
37 151
|
0cxpd |
|
153 |
152
|
adantl |
|
154 |
153
|
abs00bd |
|
155 |
|
simpllr |
|
156 |
155
|
rpgt0d |
|
157 |
154 156
|
eqbrtrd |
|
158 |
|
fvoveq1 |
|
159 |
158
|
breq1d |
|
160 |
157 159
|
syl5ibcom |
|
161 |
160
|
a1dd |
|
162 |
161
|
ralrimdva |
|
163 |
141 162
|
jaod |
|
164 |
29 163
|
sylbid |
|
165 |
164
|
expimpd |
|
166 |
26 165
|
syl5bi |
|
167 |
166
|
ralrimiv |
|
168 |
|
breq2 |
|
169 |
|
breq2 |
|
170 |
168 169
|
anbi12d |
|
171 |
170
|
imbi1d |
|
172 |
171
|
2ralbidv |
|
173 |
172
|
rspcev |
|
174 |
25 167 173
|
syl2anc |
|