Metamath Proof Explorer


Theorem cxpcom

Description: Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022)

Ref Expression
Assertion cxpcom A + B C A B C = A C B

Proof

Step Hyp Ref Expression
1 recn B B
2 recn C C
3 mulcom B C B C = C B
4 1 2 3 syl2an B C B C = C B
5 4 3adant1 A + B C B C = C B
6 5 oveq2d A + B C A B C = A C B
7 cxpmul A + B C A B C = A B C
8 2 7 syl3an3 A + B C A B C = A B C
9 simp1 A + B C A +
10 simp3 A + B C C
11 1 3ad2ant2 A + B C B
12 9 10 11 cxpmuld A + B C A C B = A C B
13 6 8 12 3eqtr3d A + B C A B C = A C B