Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
cxpcom
Next ⟩
dvcxp1
Metamath Proof Explorer
Ascii
Unicode
Theorem
cxpcom
Description:
Commutative law for real exponentiation.
(Contributed by
AV
, 29-Dec-2022)
Ref
Expression
Assertion
cxpcom
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
B
C
=
A
C
B
Proof
Step
Hyp
Ref
Expression
1
recn
⊢
B
∈
ℝ
→
B
∈
ℂ
2
recn
⊢
C
∈
ℝ
→
C
∈
ℂ
3
mulcom
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
⁢
C
=
C
⁢
B
4
1
2
3
syl2an
⊢
B
∈
ℝ
∧
C
∈
ℝ
→
B
⁢
C
=
C
⁢
B
5
4
3adant1
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
⁢
C
=
C
⁢
B
6
5
oveq2d
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
B
⁢
C
=
A
C
⁢
B
7
cxpmul
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
∧
C
∈
ℂ
→
A
B
⁢
C
=
A
B
C
8
2
7
syl3an3
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
B
⁢
C
=
A
B
C
9
simp1
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
∈
ℝ
+
10
simp3
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
∧
C
∈
ℝ
→
C
∈
ℝ
11
1
3ad2ant2
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
∈
ℂ
12
9
10
11
cxpmuld
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
C
⁢
B
=
A
C
B
13
6
8
12
3eqtr3d
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
B
C
=
A
C
B