Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
cxpef
Next ⟩
0cxp
Metamath Proof Explorer
Ascii
Unicode
Theorem
cxpef
Description:
Value of the complex power function.
(Contributed by
Mario Carneiro
, 2-Aug-2014)
Ref
Expression
Assertion
cxpef
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
→
A
B
=
e
B
⁢
log
⁡
A
Proof
Step
Hyp
Ref
Expression
1
cxpval
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
=
if
A
=
0
if
B
=
0
1
0
e
B
⁢
log
⁡
A
2
1
3adant2
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
→
A
B
=
if
A
=
0
if
B
=
0
1
0
e
B
⁢
log
⁡
A
3
simp2
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
→
A
≠
0
4
3
neneqd
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
→
¬
A
=
0
5
4
iffalsed
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
→
if
A
=
0
if
B
=
0
1
0
e
B
⁢
log
⁡
A
=
e
B
⁢
log
⁡
A
6
2
5
eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
→
A
B
=
e
B
⁢
log
⁡
A