Metamath Proof Explorer


Theorem cxpef

Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpef A A 0 B A B = e B log A

Proof

Step Hyp Ref Expression
1 cxpval A B A B = if A = 0 if B = 0 1 0 e B log A
2 1 3adant2 A A 0 B A B = if A = 0 if B = 0 1 0 e B log A
3 simp2 A A 0 B A 0
4 3 neneqd A A 0 B ¬ A = 0
5 4 iffalsed A A 0 B if A = 0 if B = 0 1 0 e B log A = e B log A
6 2 5 eqtrd A A 0 B A B = e B log A