Metamath Proof Explorer


Theorem cxpefd

Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φ A
cxpefd.2 φ A 0
cxpefd.3 φ B
Assertion cxpefd φ A B = e B log A

Proof

Step Hyp Ref Expression
1 cxp0d.1 φ A
2 cxpefd.2 φ A 0
3 cxpefd.3 φ B
4 cxpef A A 0 B A B = e B log A
5 1 2 3 4 syl3anc φ A B = e B log A