| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2 |  | 
						
							| 2 |  | nnm1nn0 |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 |  | nn0uz |  | 
						
							| 5 | 3 4 | eleqtrdi |  | 
						
							| 6 |  | eluzfz1 |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 |  | neg1cn |  | 
						
							| 9 |  | 2re |  | 
						
							| 10 |  | simp2 |  | 
						
							| 11 |  | nndivre |  | 
						
							| 12 | 9 10 11 | sylancr |  | 
						
							| 13 | 12 | recnd |  | 
						
							| 14 |  | cxpcl |  | 
						
							| 15 | 8 13 14 | sylancr |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 |  | 0nn0 |  | 
						
							| 18 |  | expcl |  | 
						
							| 19 | 16 17 18 | sylancl |  | 
						
							| 20 | 19 | mul02d |  | 
						
							| 21 |  | simprl |  | 
						
							| 22 | 21 | oveq1d |  | 
						
							| 23 |  | simprr |  | 
						
							| 24 | 1 | 0expd |  | 
						
							| 25 | 22 23 24 | 3eqtr3d |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 |  | nncn |  | 
						
							| 28 |  | nnne0 |  | 
						
							| 29 |  | reccl |  | 
						
							| 30 |  | recne0 |  | 
						
							| 31 | 29 30 | 0cxpd |  | 
						
							| 32 | 27 28 31 | syl2anc |  | 
						
							| 33 | 1 32 | syl |  | 
						
							| 34 | 26 33 | eqtrd |  | 
						
							| 35 | 34 | oveq1d |  | 
						
							| 36 | 20 35 21 | 3eqtr4rd |  | 
						
							| 37 |  | oveq2 |  | 
						
							| 38 | 37 | oveq2d |  | 
						
							| 39 | 38 | rspceeqv |  | 
						
							| 40 | 7 36 39 | syl2anc |  | 
						
							| 41 | 40 | expr |  | 
						
							| 42 |  | simpl1 |  | 
						
							| 43 |  | simpr |  | 
						
							| 44 |  | simpl2 |  | 
						
							| 45 | 44 | nnzd |  | 
						
							| 46 |  | explog |  | 
						
							| 47 | 42 43 45 46 | syl3anc |  | 
						
							| 48 | 47 | eqcomd |  | 
						
							| 49 | 10 | nncnd |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 | 42 43 | logcld |  | 
						
							| 52 | 50 51 | mulcld |  | 
						
							| 53 | 44 | nnnn0d |  | 
						
							| 54 | 42 53 | expcld |  | 
						
							| 55 | 42 43 45 | expne0d |  | 
						
							| 56 |  | eflogeq |  | 
						
							| 57 | 52 54 55 56 | syl3anc |  | 
						
							| 58 | 48 57 | mpbid |  | 
						
							| 59 | 54 55 | logcld |  | 
						
							| 60 | 59 | adantr |  | 
						
							| 61 |  | ax-icn |  | 
						
							| 62 |  | 2cn |  | 
						
							| 63 |  | picn |  | 
						
							| 64 | 62 63 | mulcli |  | 
						
							| 65 | 61 64 | mulcli |  | 
						
							| 66 |  | zcn |  | 
						
							| 67 | 66 | adantl |  | 
						
							| 68 |  | mulcl |  | 
						
							| 69 | 65 67 68 | sylancr |  | 
						
							| 70 | 60 69 | addcld |  | 
						
							| 71 | 50 | adantr |  | 
						
							| 72 | 51 | adantr |  | 
						
							| 73 | 10 | nnne0d |  | 
						
							| 74 | 73 | ad2antrr |  | 
						
							| 75 | 70 71 72 74 | divmuld |  | 
						
							| 76 |  | fveq2 |  | 
						
							| 77 | 71 74 | reccld |  | 
						
							| 78 | 77 60 | mulcld |  | 
						
							| 79 | 13 | ad2antrr |  | 
						
							| 80 | 79 67 | mulcld |  | 
						
							| 81 | 61 63 | mulcli |  | 
						
							| 82 |  | mulcl |  | 
						
							| 83 | 80 81 82 | sylancl |  | 
						
							| 84 |  | efadd |  | 
						
							| 85 | 78 83 84 | syl2anc |  | 
						
							| 86 | 60 69 71 74 | divdird |  | 
						
							| 87 | 60 71 74 | divrec2d |  | 
						
							| 88 | 65 | a1i |  | 
						
							| 89 | 88 67 71 74 | div23d |  | 
						
							| 90 | 61 62 63 | mul12i |  | 
						
							| 91 | 90 | oveq1i |  | 
						
							| 92 | 62 | a1i |  | 
						
							| 93 | 81 | a1i |  | 
						
							| 94 | 92 93 71 74 | div23d |  | 
						
							| 95 | 91 94 | eqtrid |  | 
						
							| 96 | 95 | oveq1d |  | 
						
							| 97 | 79 93 67 | mul32d |  | 
						
							| 98 | 89 96 97 | 3eqtrd |  | 
						
							| 99 | 87 98 | oveq12d |  | 
						
							| 100 | 86 99 | eqtrd |  | 
						
							| 101 | 100 | fveq2d |  | 
						
							| 102 | 54 | adantr |  | 
						
							| 103 | 55 | adantr |  | 
						
							| 104 | 102 103 77 | cxpefd |  | 
						
							| 105 | 8 | a1i |  | 
						
							| 106 |  | neg1ne0 |  | 
						
							| 107 | 106 | a1i |  | 
						
							| 108 |  | simpr |  | 
						
							| 109 | 105 107 79 108 | cxpmul2zd |  | 
						
							| 110 | 105 107 80 | cxpefd |  | 
						
							| 111 |  | logm1 |  | 
						
							| 112 | 111 | oveq2i |  | 
						
							| 113 | 112 | fveq2i |  | 
						
							| 114 | 110 113 | eqtrdi |  | 
						
							| 115 | 105 79 | cxpcld |  | 
						
							| 116 | 8 | a1i |  | 
						
							| 117 | 106 | a1i |  | 
						
							| 118 | 116 117 13 | cxpne0d |  | 
						
							| 119 | 118 | ad2antrr |  | 
						
							| 120 | 115 119 108 | expclzd |  | 
						
							| 121 | 44 | adantr |  | 
						
							| 122 | 108 121 | zmodcld |  | 
						
							| 123 | 115 122 | expcld |  | 
						
							| 124 | 122 | nn0zd |  | 
						
							| 125 | 115 119 124 | expne0d |  | 
						
							| 126 | 115 119 124 108 | expsubd |  | 
						
							| 127 | 121 | nnzd |  | 
						
							| 128 |  | zre |  | 
						
							| 129 | 121 | nnrpd |  | 
						
							| 130 |  | moddifz |  | 
						
							| 131 | 128 129 130 | syl2an2 |  | 
						
							| 132 |  | expmulz |  | 
						
							| 133 | 115 119 127 131 132 | syl22anc |  | 
						
							| 134 | 122 | nn0cnd |  | 
						
							| 135 | 67 134 | subcld |  | 
						
							| 136 | 135 71 74 | divcan2d |  | 
						
							| 137 | 136 | oveq2d |  | 
						
							| 138 |  | root1id |  | 
						
							| 139 | 121 138 | syl |  | 
						
							| 140 | 139 | oveq1d |  | 
						
							| 141 |  | 1exp |  | 
						
							| 142 | 131 141 | syl |  | 
						
							| 143 | 140 142 | eqtrd |  | 
						
							| 144 | 133 137 143 | 3eqtr3d |  | 
						
							| 145 | 126 144 | eqtr3d |  | 
						
							| 146 | 120 123 125 145 | diveq1d |  | 
						
							| 147 | 109 114 146 | 3eqtr3rd |  | 
						
							| 148 | 104 147 | oveq12d |  | 
						
							| 149 | 85 101 148 | 3eqtr4d |  | 
						
							| 150 |  | eflog |  | 
						
							| 151 | 42 43 150 | syl2anc |  | 
						
							| 152 | 151 | adantr |  | 
						
							| 153 | 149 152 | eqeq12d |  | 
						
							| 154 |  | zmodfz |  | 
						
							| 155 | 108 121 154 | syl2anc |  | 
						
							| 156 |  | eqcom |  | 
						
							| 157 |  | oveq2 |  | 
						
							| 158 | 157 | oveq2d |  | 
						
							| 159 | 158 | eqeq1d |  | 
						
							| 160 | 156 159 | bitrid |  | 
						
							| 161 | 160 | rspcev |  | 
						
							| 162 | 161 | ex |  | 
						
							| 163 | 155 162 | syl |  | 
						
							| 164 | 153 163 | sylbid |  | 
						
							| 165 | 76 164 | syl5 |  | 
						
							| 166 | 75 165 | sylbird |  | 
						
							| 167 | 166 | rexlimdva |  | 
						
							| 168 | 58 167 | mpd |  | 
						
							| 169 |  | oveq1 |  | 
						
							| 170 | 169 | oveq1d |  | 
						
							| 171 | 170 | eqeq2d |  | 
						
							| 172 | 171 | rexbidv |  | 
						
							| 173 | 168 172 | syl5ibcom |  | 
						
							| 174 | 41 173 | pm2.61dane |  | 
						
							| 175 |  | simp3 |  | 
						
							| 176 |  | nnrecre |  | 
						
							| 177 | 176 | 3ad2ant2 |  | 
						
							| 178 | 177 | recnd |  | 
						
							| 179 | 175 178 | cxpcld |  | 
						
							| 180 | 179 | adantr |  | 
						
							| 181 |  | elfznn0 |  | 
						
							| 182 |  | expcl |  | 
						
							| 183 | 15 181 182 | syl2an |  | 
						
							| 184 | 10 | adantr |  | 
						
							| 185 | 184 | nnnn0d |  | 
						
							| 186 | 180 183 185 | mulexpd |  | 
						
							| 187 | 175 | adantr |  | 
						
							| 188 |  | cxproot |  | 
						
							| 189 | 187 184 188 | syl2anc |  | 
						
							| 190 | 181 | adantl |  | 
						
							| 191 | 190 | nn0cnd |  | 
						
							| 192 | 184 | nncnd |  | 
						
							| 193 | 191 192 | mulcomd |  | 
						
							| 194 | 193 | oveq2d |  | 
						
							| 195 | 15 | adantr |  | 
						
							| 196 | 195 185 190 | expmuld |  | 
						
							| 197 | 195 190 185 | expmuld |  | 
						
							| 198 | 194 196 197 | 3eqtr3d |  | 
						
							| 199 | 184 138 | syl |  | 
						
							| 200 | 199 | oveq1d |  | 
						
							| 201 |  | elfzelz |  | 
						
							| 202 | 201 | adantl |  | 
						
							| 203 |  | 1exp |  | 
						
							| 204 | 202 203 | syl |  | 
						
							| 205 | 198 200 204 | 3eqtrd |  | 
						
							| 206 | 189 205 | oveq12d |  | 
						
							| 207 | 187 | mulridd |  | 
						
							| 208 | 186 206 207 | 3eqtrd |  | 
						
							| 209 |  | oveq1 |  | 
						
							| 210 | 209 | eqeq1d |  | 
						
							| 211 | 208 210 | syl5ibrcom |  | 
						
							| 212 | 211 | rexlimdva |  | 
						
							| 213 | 174 212 | impbid |  |