Metamath Proof Explorer


Theorem cxpexp

Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpexp A B 0 A B = A B

Proof

Step Hyp Ref Expression
1 elnn0 B 0 B B = 0
2 nncn B B
3 nnne0 B B 0
4 0cxp B B 0 0 B = 0
5 2 3 4 syl2anc B 0 B = 0
6 0exp B 0 B = 0
7 5 6 eqtr4d B 0 B = 0 B
8 0cn 0
9 cxpval 0 0 0 0 = if 0 = 0 if 0 = 0 1 0 e 0 log 0
10 8 8 9 mp2an 0 0 = if 0 = 0 if 0 = 0 1 0 e 0 log 0
11 eqid 0 = 0
12 11 iftruei if 0 = 0 if 0 = 0 1 0 e 0 log 0 = if 0 = 0 1 0
13 11 iftruei if 0 = 0 1 0 = 1
14 10 12 13 3eqtri 0 0 = 1
15 0exp0e1 0 0 = 1
16 14 15 eqtr4i 0 0 = 0 0
17 oveq2 B = 0 0 B = 0 0
18 oveq2 B = 0 0 B = 0 0
19 16 17 18 3eqtr4a B = 0 0 B = 0 B
20 7 19 jaoi B B = 0 0 B = 0 B
21 1 20 sylbi B 0 0 B = 0 B
22 oveq1 A = 0 A B = 0 B
23 oveq1 A = 0 A B = 0 B
24 22 23 eqeq12d A = 0 A B = A B 0 B = 0 B
25 21 24 syl5ibrcom B 0 A = 0 A B = A B
26 25 adantl A B 0 A = 0 A B = A B
27 26 imp A B 0 A = 0 A B = A B
28 nn0z B 0 B
29 cxpexpz A A 0 B A B = A B
30 29 3expa A A 0 B A B = A B
31 28 30 sylan2 A A 0 B 0 A B = A B
32 31 an32s A B 0 A 0 A B = A B
33 27 32 pm2.61dane A B 0 A B = A B