Metamath Proof Explorer


Theorem cxpexpz

Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpexpz A A 0 B A B = A B

Proof

Step Hyp Ref Expression
1 zcn B B
2 cxpef A A 0 B A B = e B log A
3 1 2 syl3an3 A A 0 B A B = e B log A
4 explog A A 0 B A B = e B log A
5 3 4 eqtr4d A A 0 B A B = A B