Metamath Proof Explorer


Theorem cxpexpzd

Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φ A
cxpefd.2 φ A 0
cxpexpzd.3 φ B
Assertion cxpexpzd φ A B = A B

Proof

Step Hyp Ref Expression
1 cxp0d.1 φ A
2 cxpefd.2 φ A 0
3 cxpexpzd.3 φ B
4 cxpexpz A A 0 B A B = A B
5 1 2 3 4 syl3anc φ A B = A B