Metamath Proof Explorer


Theorem cxpge0

Description: Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpge0 A 0 A B 0 A B

Proof

Step Hyp Ref Expression
1 0re 0
2 leloe 0 A 0 A 0 < A 0 = A
3 1 2 mpan A 0 A 0 < A 0 = A
4 3 adantr A B 0 A 0 < A 0 = A
5 elrp A + A 0 < A
6 rpcxpcl A + B A B +
7 6 rpge0d A + B 0 A B
8 7 ex A + B 0 A B
9 5 8 sylbir A 0 < A B 0 A B
10 9 impancom A B 0 < A 0 A B
11 0le1 0 1
12 0cn 0
13 cxp0 0 0 0 = 1
14 12 13 ax-mp 0 0 = 1
15 11 14 breqtrri 0 0 0
16 simpr B B = 0 B = 0
17 16 oveq2d B B = 0 0 B = 0 0
18 15 17 breqtrrid B B = 0 0 0 B
19 0le0 0 0
20 recn B B
21 0cxp B B 0 0 B = 0
22 20 21 sylan B B 0 0 B = 0
23 19 22 breqtrrid B B 0 0 0 B
24 18 23 pm2.61dane B 0 0 B
25 24 adantl A B 0 0 B
26 oveq1 0 = A 0 B = A B
27 26 breq2d 0 = A 0 0 B 0 A B
28 25 27 syl5ibcom A B 0 = A 0 A B
29 10 28 jaod A B 0 < A 0 = A 0 A B
30 4 29 sylbid A B 0 A 0 A B
31 30 3impia A B 0 A 0 A B
32 31 3com23 A 0 A B 0 A B