Metamath Proof Explorer


Theorem cxple

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxple A 1 < A B C B C A B A C

Proof

Step Hyp Ref Expression
1 cxplt A 1 < A C B C < B A C < A B
2 1 ancom2s A 1 < A B C C < B A C < A B
3 2 notbid A 1 < A B C ¬ C < B ¬ A C < A B
4 lenlt B C B C ¬ C < B
5 4 adantl A 1 < A B C B C ¬ C < B
6 simpll A 1 < A B C A
7 0red A 1 < A B C 0
8 1red A 1 < A B C 1
9 0lt1 0 < 1
10 9 a1i A 1 < A B C 0 < 1
11 simplr A 1 < A B C 1 < A
12 7 8 6 10 11 lttrd A 1 < A B C 0 < A
13 7 6 12 ltled A 1 < A B C 0 A
14 simprl A 1 < A B C B
15 recxpcl A 0 A B A B
16 6 13 14 15 syl3anc A 1 < A B C A B
17 simprr A 1 < A B C C
18 recxpcl A 0 A C A C
19 6 13 17 18 syl3anc A 1 < A B C A C
20 16 19 lenltd A 1 < A B C A B A C ¬ A C < A B
21 3 5 20 3bitr4d A 1 < A B C B C A B A C