Metamath Proof Explorer


Theorem cxple2

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Assertion cxple2 A 0 A B 0 B C + A B A C B C

Proof

Step Hyp Ref Expression
1 simpl1l A 0 A B 0 B C + 0 < A A
2 simpr A 0 A B 0 B C + 0 < A 0 < A
3 1 2 elrpd A 0 A B 0 B C + 0 < A A +
4 3 adantr A 0 A B 0 B C + 0 < A 0 < B A +
5 simp2l A 0 A B 0 B C + B
6 5 ad2antrr A 0 A B 0 B C + 0 < A 0 < B B
7 simpr A 0 A B 0 B C + 0 < A 0 < B 0 < B
8 6 7 elrpd A 0 A B 0 B C + 0 < A 0 < B B +
9 simp3 A 0 A B 0 B C + C +
10 9 ad2antrr A 0 A B 0 B C + 0 < A 0 < B C +
11 simp3 A + B + C + C +
12 11 rpred A + B + C + C
13 relogcl A + log A
14 13 3ad2ant1 A + B + C + log A
15 12 14 remulcld A + B + C + C log A
16 relogcl B + log B
17 16 3ad2ant2 A + B + C + log B
18 12 17 remulcld A + B + C + C log B
19 efle C log A C log B C log A C log B e C log A e C log B
20 15 18 19 syl2anc A + B + C + C log A C log B e C log A e C log B
21 efle log A log B log A log B e log A e log B
22 14 17 21 syl2anc A + B + C + log A log B e log A e log B
23 14 17 11 lemul2d A + B + C + log A log B C log A C log B
24 reeflog A + e log A = A
25 24 3ad2ant1 A + B + C + e log A = A
26 reeflog B + e log B = B
27 26 3ad2ant2 A + B + C + e log B = B
28 25 27 breq12d A + B + C + e log A e log B A B
29 22 23 28 3bitr3rd A + B + C + A B C log A C log B
30 rpre A + A
31 30 3ad2ant1 A + B + C + A
32 31 recnd A + B + C + A
33 rpne0 A + A 0
34 33 3ad2ant1 A + B + C + A 0
35 12 recnd A + B + C + C
36 cxpef A A 0 C A C = e C log A
37 32 34 35 36 syl3anc A + B + C + A C = e C log A
38 rpre B + B
39 38 3ad2ant2 A + B + C + B
40 39 recnd A + B + C + B
41 rpne0 B + B 0
42 41 3ad2ant2 A + B + C + B 0
43 cxpef B B 0 C B C = e C log B
44 40 42 35 43 syl3anc A + B + C + B C = e C log B
45 37 44 breq12d A + B + C + A C B C e C log A e C log B
46 20 29 45 3bitr4d A + B + C + A B A C B C
47 4 8 10 46 syl3anc A 0 A B 0 B C + 0 < A 0 < B A B A C B C
48 0re 0
49 simp1l A 0 A B 0 B C + A
50 ltnle 0 A 0 < A ¬ A 0
51 48 49 50 sylancr A 0 A B 0 B C + 0 < A ¬ A 0
52 51 biimpa A 0 A B 0 B C + 0 < A ¬ A 0
53 9 rpred A 0 A B 0 B C + C
54 53 adantr A 0 A B 0 B C + 0 < A C
55 rpcxpcl A + C A C +
56 3 54 55 syl2anc A 0 A B 0 B C + 0 < A A C +
57 rpgt0 A C + 0 < A C
58 rpre A C + A C
59 ltnle 0 A C 0 < A C ¬ A C 0
60 48 58 59 sylancr A C + 0 < A C ¬ A C 0
61 57 60 mpbid A C + ¬ A C 0
62 56 61 syl A 0 A B 0 B C + 0 < A ¬ A C 0
63 53 recnd A 0 A B 0 B C + C
64 9 rpne0d A 0 A B 0 B C + C 0
65 0cxp C C 0 0 C = 0
66 63 64 65 syl2anc A 0 A B 0 B C + 0 C = 0
67 66 adantr A 0 A B 0 B C + 0 < A 0 C = 0
68 67 breq2d A 0 A B 0 B C + 0 < A A C 0 C A C 0
69 62 68 mtbird A 0 A B 0 B C + 0 < A ¬ A C 0 C
70 52 69 2falsed A 0 A B 0 B C + 0 < A A 0 A C 0 C
71 breq2 0 = B A 0 A B
72 oveq1 0 = B 0 C = B C
73 72 breq2d 0 = B A C 0 C A C B C
74 71 73 bibi12d 0 = B A 0 A C 0 C A B A C B C
75 70 74 syl5ibcom A 0 A B 0 B C + 0 < A 0 = B A B A C B C
76 75 imp A 0 A B 0 B C + 0 < A 0 = B A B A C B C
77 simp2r A 0 A B 0 B C + 0 B
78 leloe 0 B 0 B 0 < B 0 = B
79 48 5 78 sylancr A 0 A B 0 B C + 0 B 0 < B 0 = B
80 77 79 mpbid A 0 A B 0 B C + 0 < B 0 = B
81 80 adantr A 0 A B 0 B C + 0 < A 0 < B 0 = B
82 47 76 81 mpjaodan A 0 A B 0 B C + 0 < A A B A C B C
83 simpr A 0 A B 0 B C + 0 = A 0 = A
84 simpl2r A 0 A B 0 B C + 0 = A 0 B
85 83 84 eqbrtrrd A 0 A B 0 B C + 0 = A A B
86 66 adantr A 0 A B 0 B C + 0 = A 0 C = 0
87 83 oveq1d A 0 A B 0 B C + 0 = A 0 C = A C
88 86 87 eqtr3d A 0 A B 0 B C + 0 = A 0 = A C
89 simpl2l A 0 A B 0 B C + 0 = A B
90 53 adantr A 0 A B 0 B C + 0 = A C
91 cxpge0 B 0 B C 0 B C
92 89 84 90 91 syl3anc A 0 A B 0 B C + 0 = A 0 B C
93 88 92 eqbrtrrd A 0 A B 0 B C + 0 = A A C B C
94 85 93 2thd A 0 A B 0 B C + 0 = A A B A C B C
95 simp1r A 0 A B 0 B C + 0 A
96 leloe 0 A 0 A 0 < A 0 = A
97 48 49 96 sylancr A 0 A B 0 B C + 0 A 0 < A 0 = A
98 95 97 mpbid A 0 A B 0 B C + 0 < A 0 = A
99 82 94 98 mpjaodan A 0 A B 0 B C + A B A C B C