Metamath Proof Explorer
		
		
		
		Description:  Ordering property for complex exponentiation.  (Contributed by Mario
         Carneiro, 30-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | recxpcld.1 |  | 
					
						|  |  | recxpcld.2 |  | 
					
						|  |  | recxpcld.3 |  | 
					
						|  |  | cxple2ad.4 |  | 
					
						|  |  | cxple2ad.5 |  | 
					
						|  |  | cxple2ad.6 |  | 
				
					|  | Assertion | cxple2ad |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recxpcld.1 |  | 
						
							| 2 |  | recxpcld.2 |  | 
						
							| 3 |  | recxpcld.3 |  | 
						
							| 4 |  | cxple2ad.4 |  | 
						
							| 5 |  | cxple2ad.5 |  | 
						
							| 6 |  | cxple2ad.6 |  | 
						
							| 7 |  | cxple2a |  | 
						
							| 8 | 1 3 4 2 5 6 7 | syl321anc |  |