Metamath Proof Explorer
Description: Ordering property for complex exponentiation. (Contributed by Mario
Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
recxpcld.1 |
|
|
|
recxpcld.2 |
|
|
|
recxpcld.3 |
|
|
|
cxple2ad.4 |
|
|
|
cxple2ad.5 |
|
|
|
cxple2ad.6 |
|
|
Assertion |
cxple2ad |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
recxpcld.1 |
|
2 |
|
recxpcld.2 |
|
3 |
|
recxpcld.3 |
|
4 |
|
cxple2ad.4 |
|
5 |
|
cxple2ad.5 |
|
6 |
|
cxple2ad.6 |
|
7 |
|
cxple2a |
|
8 |
1 3 4 2 5 6 7
|
syl321anc |
|