Metamath Proof Explorer


Theorem cxple2ad

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φ A
recxpcld.2 φ 0 A
recxpcld.3 φ B
cxple2ad.4 φ C
cxple2ad.5 φ 0 C
cxple2ad.6 φ A B
Assertion cxple2ad φ A C B C

Proof

Step Hyp Ref Expression
1 recxpcld.1 φ A
2 recxpcld.2 φ 0 A
3 recxpcld.3 φ B
4 cxple2ad.4 φ C
5 cxple2ad.5 φ 0 C
6 cxple2ad.6 φ A B
7 cxple2a A B C 0 A 0 C A B A C B C
8 1 3 4 2 5 6 7 syl321anc φ A C B C