Metamath Proof Explorer
Description: Ordering property for complex exponentiation. (Contributed by Mario
Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
recxpcld.1 |
|
|
|
recxpcld.2 |
|
|
|
recxpcld.3 |
|
|
|
mulcxpd.4 |
|
|
|
cxple2d.5 |
|
|
Assertion |
cxple2d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
recxpcld.1 |
|
2 |
|
recxpcld.2 |
|
3 |
|
recxpcld.3 |
|
4 |
|
mulcxpd.4 |
|
5 |
|
cxple2d.5 |
|
6 |
|
cxple2 |
|
7 |
1 2 3 4 5 6
|
syl221anc |
|