Metamath Proof Explorer


Theorem cxple2d

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φ A
recxpcld.2 φ 0 A
recxpcld.3 φ B
mulcxpd.4 φ 0 B
cxple2d.5 φ C +
Assertion cxple2d φ A B A C B C

Proof

Step Hyp Ref Expression
1 recxpcld.1 φ A
2 recxpcld.2 φ 0 A
3 recxpcld.3 φ B
4 mulcxpd.4 φ 0 B
5 cxple2d.5 φ C +
6 cxple2 A 0 A B 0 B C + A B A C B C
7 1 2 3 4 5 6 syl221anc φ A B A C B C