Metamath Proof Explorer


Theorem cxplea

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Assertion cxplea A 1 A B C B C A B A C

Proof

Step Hyp Ref Expression
1 simpl3 A 1 A B C B C 1 < A B C
2 simpl1l A 1 A B C B C 1 < A A
3 simpr A 1 A B C B C 1 < A 1 < A
4 simpl2 A 1 A B C B C 1 < A B C
5 cxple A 1 < A B C B C A B A C
6 2 3 4 5 syl21anc A 1 A B C B C 1 < A B C A B A C
7 1 6 mpbid A 1 A B C B C 1 < A A B A C
8 1le1 1 1
9 simp2l A 1 A B C B C B
10 9 recnd A 1 A B C B C B
11 1cxp B 1 B = 1
12 10 11 syl A 1 A B C B C 1 B = 1
13 simp2r A 1 A B C B C C
14 13 recnd A 1 A B C B C C
15 1cxp C 1 C = 1
16 14 15 syl A 1 A B C B C 1 C = 1
17 12 16 breq12d A 1 A B C B C 1 B 1 C 1 1
18 8 17 mpbiri A 1 A B C B C 1 B 1 C
19 oveq1 1 = A 1 B = A B
20 oveq1 1 = A 1 C = A C
21 19 20 breq12d 1 = A 1 B 1 C A B A C
22 18 21 syl5ibcom A 1 A B C B C 1 = A A B A C
23 22 imp A 1 A B C B C 1 = A A B A C
24 1re 1
25 leloe 1 A 1 A 1 < A 1 = A
26 24 25 mpan A 1 A 1 < A 1 = A
27 26 biimpa A 1 A 1 < A 1 = A
28 27 3ad2ant1 A 1 A B C B C 1 < A 1 = A
29 7 23 28 mpjaodan A 1 A B C B C A B A C