Metamath Proof Explorer


Theorem cxplead

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φ A
cxplead.2 φ 1 A
cxplead.3 φ B
cxplead.4 φ C
cxplead.5 φ B C
Assertion cxplead φ A B A C

Proof

Step Hyp Ref Expression
1 recxpcld.1 φ A
2 cxplead.2 φ 1 A
3 cxplead.3 φ B
4 cxplead.4 φ C
5 cxplead.5 φ B C
6 cxplea A 1 A B C B C A B A C
7 1 2 3 4 5 6 syl221anc φ A B A C