Step |
Hyp |
Ref |
Expression |
1 |
|
logbval |
|
2 |
1
|
oveq2d |
|
3 |
|
eldifi |
|
4 |
3
|
adantr |
|
5 |
|
eldif |
|
6 |
|
c0ex |
|
7 |
6
|
prid1 |
|
8 |
|
eleq1 |
|
9 |
7 8
|
mpbiri |
|
10 |
9
|
necon3bi |
|
11 |
10
|
adantl |
|
12 |
5 11
|
sylbi |
|
13 |
12
|
adantr |
|
14 |
|
eldif |
|
15 |
6
|
snid |
|
16 |
|
eleq1 |
|
17 |
15 16
|
mpbiri |
|
18 |
17
|
necon3bi |
|
19 |
18
|
anim2i |
|
20 |
14 19
|
sylbi |
|
21 |
|
logcl |
|
22 |
20 21
|
syl |
|
23 |
22
|
adantl |
|
24 |
10
|
anim2i |
|
25 |
5 24
|
sylbi |
|
26 |
|
logcl |
|
27 |
25 26
|
syl |
|
28 |
27
|
adantr |
|
29 |
|
eldifpr |
|
30 |
29
|
biimpi |
|
31 |
30
|
adantr |
|
32 |
|
logccne0 |
|
33 |
31 32
|
syl |
|
34 |
23 28 33
|
divcld |
|
35 |
4 13 34
|
cxpefd |
|
36 |
|
eldifsn |
|
37 |
36 21
|
sylbi |
|
38 |
37
|
adantl |
|
39 |
29 32
|
sylbi |
|
40 |
39
|
adantr |
|
41 |
38 28 40
|
divcan1d |
|
42 |
41
|
fveq2d |
|
43 |
|
eflog |
|
44 |
36 43
|
sylbi |
|
45 |
44
|
adantl |
|
46 |
42 45
|
eqtrd |
|
47 |
2 35 46
|
3eqtrd |
|