Metamath Proof Explorer


Theorem cxplogb

Description: Identity law for the general logarithm. (Contributed by AV, 22-May-2020)

Ref Expression
Assertion cxplogb B 0 1 X 0 B log B X = X

Proof

Step Hyp Ref Expression
1 logbval B 0 1 X 0 log B X = log X log B
2 1 oveq2d B 0 1 X 0 B log B X = B log X log B
3 eldifi B 0 1 B
4 3 adantr B 0 1 X 0 B
5 eldif B 0 1 B ¬ B 0 1
6 c0ex 0 V
7 6 prid1 0 0 1
8 eleq1 B = 0 B 0 1 0 0 1
9 7 8 mpbiri B = 0 B 0 1
10 9 necon3bi ¬ B 0 1 B 0
11 10 adantl B ¬ B 0 1 B 0
12 5 11 sylbi B 0 1 B 0
13 12 adantr B 0 1 X 0 B 0
14 eldif X 0 X ¬ X 0
15 6 snid 0 0
16 eleq1 X = 0 X 0 0 0
17 15 16 mpbiri X = 0 X 0
18 17 necon3bi ¬ X 0 X 0
19 18 anim2i X ¬ X 0 X X 0
20 14 19 sylbi X 0 X X 0
21 logcl X X 0 log X
22 20 21 syl X 0 log X
23 22 adantl B 0 1 X 0 log X
24 10 anim2i B ¬ B 0 1 B B 0
25 5 24 sylbi B 0 1 B B 0
26 logcl B B 0 log B
27 25 26 syl B 0 1 log B
28 27 adantr B 0 1 X 0 log B
29 eldifpr B 0 1 B B 0 B 1
30 29 biimpi B 0 1 B B 0 B 1
31 30 adantr B 0 1 X 0 B B 0 B 1
32 logccne0 B B 0 B 1 log B 0
33 31 32 syl B 0 1 X 0 log B 0
34 23 28 33 divcld B 0 1 X 0 log X log B
35 4 13 34 cxpefd B 0 1 X 0 B log X log B = e log X log B log B
36 eldifsn X 0 X X 0
37 36 21 sylbi X 0 log X
38 37 adantl B 0 1 X 0 log X
39 29 32 sylbi B 0 1 log B 0
40 39 adantr B 0 1 X 0 log B 0
41 38 28 40 divcan1d B 0 1 X 0 log X log B log B = log X
42 41 fveq2d B 0 1 X 0 e log X log B log B = e log X
43 eflog X X 0 e log X = X
44 36 43 sylbi X 0 e log X = X
45 44 adantl B 0 1 X 0 e log X = X
46 42 45 eqtrd B 0 1 X 0 e log X log B log B = X
47 2 35 46 3eqtrd B 0 1 X 0 B log B X = X