Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
|
2 |
|
reefcl |
|
3 |
1 2
|
syl |
|
4 |
|
efgt1 |
|
5 |
|
cxp2limlem |
|
6 |
3 4 5
|
syl2anc |
|
7 |
|
reefcl |
|
8 |
7
|
adantl |
|
9 |
|
1re |
|
10 |
|
ifcl |
|
11 |
8 9 10
|
sylancl |
|
12 |
|
rpre |
|
13 |
|
maxlt |
|
14 |
9 8 12 13
|
mp3an3an |
|
15 |
|
simprrr |
|
16 |
|
reeflog |
|
17 |
16
|
ad2antrl |
|
18 |
15 17
|
breqtrrd |
|
19 |
|
simplr |
|
20 |
12
|
ad2antrl |
|
21 |
|
simprrl |
|
22 |
20 21
|
rplogcld |
|
23 |
22
|
rpred |
|
24 |
|
eflt |
|
25 |
19 23 24
|
syl2anc |
|
26 |
18 25
|
mpbird |
|
27 |
|
breq2 |
|
28 |
|
id |
|
29 |
|
oveq2 |
|
30 |
28 29
|
oveq12d |
|
31 |
30
|
fveq2d |
|
32 |
31
|
breq1d |
|
33 |
27 32
|
imbi12d |
|
34 |
33
|
rspcv |
|
35 |
22 34
|
syl |
|
36 |
26 35
|
mpid |
|
37 |
1
|
ad2antrr |
|
38 |
37
|
relogefd |
|
39 |
38
|
oveq2d |
|
40 |
22
|
rpcnd |
|
41 |
|
rpcn |
|
42 |
41
|
ad2antrr |
|
43 |
40 42
|
mulcomd |
|
44 |
39 43
|
eqtrd |
|
45 |
44
|
fveq2d |
|
46 |
3
|
ad2antrr |
|
47 |
46
|
recnd |
|
48 |
|
efne0 |
|
49 |
42 48
|
syl |
|
50 |
47 49 40
|
cxpefd |
|
51 |
|
rpcn |
|
52 |
51
|
ad2antrl |
|
53 |
|
rpne0 |
|
54 |
53
|
ad2antrl |
|
55 |
52 54 42
|
cxpefd |
|
56 |
45 50 55
|
3eqtr4d |
|
57 |
56
|
oveq2d |
|
58 |
57
|
fveq2d |
|
59 |
58
|
breq1d |
|
60 |
36 59
|
sylibd |
|
61 |
60
|
expr |
|
62 |
14 61
|
sylbid |
|
63 |
62
|
com23 |
|
64 |
63
|
ralrimdva |
|
65 |
|
breq1 |
|
66 |
65
|
rspceaimv |
|
67 |
11 64 66
|
syl6an |
|
68 |
67
|
rexlimdva |
|
69 |
68
|
ralimdv |
|
70 |
|
simpr |
|
71 |
1
|
adantr |
|
72 |
71
|
rpefcld |
|
73 |
|
rpre |
|
74 |
73
|
adantl |
|
75 |
72 74
|
rpcxpcld |
|
76 |
70 75
|
rpdivcld |
|
77 |
76
|
rpcnd |
|
78 |
77
|
ralrimiva |
|
79 |
|
rpssre |
|
80 |
79
|
a1i |
|
81 |
78 80
|
rlim0lt |
|
82 |
|
relogcl |
|
83 |
82
|
adantl |
|
84 |
|
simpr |
|
85 |
1
|
adantr |
|
86 |
84 85
|
rpcxpcld |
|
87 |
83 86
|
rerpdivcld |
|
88 |
87
|
recnd |
|
89 |
88
|
ralrimiva |
|
90 |
89 80
|
rlim0lt |
|
91 |
69 81 90
|
3imtr4d |
|
92 |
6 91
|
mpd |
|