Metamath Proof Explorer


Theorem cxploglim

Description: The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Assertion cxploglim A + n + log n n A 0

Proof

Step Hyp Ref Expression
1 rpre A + A
2 reefcl A e A
3 1 2 syl A + e A
4 efgt1 A + 1 < e A
5 cxp2limlem e A 1 < e A m + m e A m 0
6 3 4 5 syl2anc A + m + m e A m 0
7 reefcl z e z
8 7 adantl A + z e z
9 1re 1
10 ifcl e z 1 if 1 e z e z 1
11 8 9 10 sylancl A + z if 1 e z e z 1
12 rpre n + n
13 maxlt 1 e z n if 1 e z e z 1 < n 1 < n e z < n
14 9 8 12 13 mp3an3an A + z n + if 1 e z e z 1 < n 1 < n e z < n
15 simprrr A + z n + 1 < n e z < n e z < n
16 reeflog n + e log n = n
17 16 ad2antrl A + z n + 1 < n e z < n e log n = n
18 15 17 breqtrrd A + z n + 1 < n e z < n e z < e log n
19 simplr A + z n + 1 < n e z < n z
20 12 ad2antrl A + z n + 1 < n e z < n n
21 simprrl A + z n + 1 < n e z < n 1 < n
22 20 21 rplogcld A + z n + 1 < n e z < n log n +
23 22 rpred A + z n + 1 < n e z < n log n
24 eflt z log n z < log n e z < e log n
25 19 23 24 syl2anc A + z n + 1 < n e z < n z < log n e z < e log n
26 18 25 mpbird A + z n + 1 < n e z < n z < log n
27 breq2 m = log n z < m z < log n
28 id m = log n m = log n
29 oveq2 m = log n e A m = e A log n
30 28 29 oveq12d m = log n m e A m = log n e A log n
31 30 fveq2d m = log n m e A m = log n e A log n
32 31 breq1d m = log n m e A m < x log n e A log n < x
33 27 32 imbi12d m = log n z < m m e A m < x z < log n log n e A log n < x
34 33 rspcv log n + m + z < m m e A m < x z < log n log n e A log n < x
35 22 34 syl A + z n + 1 < n e z < n m + z < m m e A m < x z < log n log n e A log n < x
36 26 35 mpid A + z n + 1 < n e z < n m + z < m m e A m < x log n e A log n < x
37 1 ad2antrr A + z n + 1 < n e z < n A
38 37 relogefd A + z n + 1 < n e z < n log e A = A
39 38 oveq2d A + z n + 1 < n e z < n log n log e A = log n A
40 22 rpcnd A + z n + 1 < n e z < n log n
41 rpcn A + A
42 41 ad2antrr A + z n + 1 < n e z < n A
43 40 42 mulcomd A + z n + 1 < n e z < n log n A = A log n
44 39 43 eqtrd A + z n + 1 < n e z < n log n log e A = A log n
45 44 fveq2d A + z n + 1 < n e z < n e log n log e A = e A log n
46 3 ad2antrr A + z n + 1 < n e z < n e A
47 46 recnd A + z n + 1 < n e z < n e A
48 efne0 A e A 0
49 42 48 syl A + z n + 1 < n e z < n e A 0
50 47 49 40 cxpefd A + z n + 1 < n e z < n e A log n = e log n log e A
51 rpcn n + n
52 51 ad2antrl A + z n + 1 < n e z < n n
53 rpne0 n + n 0
54 53 ad2antrl A + z n + 1 < n e z < n n 0
55 52 54 42 cxpefd A + z n + 1 < n e z < n n A = e A log n
56 45 50 55 3eqtr4d A + z n + 1 < n e z < n e A log n = n A
57 56 oveq2d A + z n + 1 < n e z < n log n e A log n = log n n A
58 57 fveq2d A + z n + 1 < n e z < n log n e A log n = log n n A
59 58 breq1d A + z n + 1 < n e z < n log n e A log n < x log n n A < x
60 36 59 sylibd A + z n + 1 < n e z < n m + z < m m e A m < x log n n A < x
61 60 expr A + z n + 1 < n e z < n m + z < m m e A m < x log n n A < x
62 14 61 sylbid A + z n + if 1 e z e z 1 < n m + z < m m e A m < x log n n A < x
63 62 com23 A + z n + m + z < m m e A m < x if 1 e z e z 1 < n log n n A < x
64 63 ralrimdva A + z m + z < m m e A m < x n + if 1 e z e z 1 < n log n n A < x
65 breq1 y = if 1 e z e z 1 y < n if 1 e z e z 1 < n
66 65 rspceaimv if 1 e z e z 1 n + if 1 e z e z 1 < n log n n A < x y n + y < n log n n A < x
67 11 64 66 syl6an A + z m + z < m m e A m < x y n + y < n log n n A < x
68 67 rexlimdva A + z m + z < m m e A m < x y n + y < n log n n A < x
69 68 ralimdv A + x + z m + z < m m e A m < x x + y n + y < n log n n A < x
70 simpr A + m + m +
71 1 adantr A + m + A
72 71 rpefcld A + m + e A +
73 rpre m + m
74 73 adantl A + m + m
75 72 74 rpcxpcld A + m + e A m +
76 70 75 rpdivcld A + m + m e A m +
77 76 rpcnd A + m + m e A m
78 77 ralrimiva A + m + m e A m
79 rpssre +
80 79 a1i A + +
81 78 80 rlim0lt A + m + m e A m 0 x + z m + z < m m e A m < x
82 relogcl n + log n
83 82 adantl A + n + log n
84 simpr A + n + n +
85 1 adantr A + n + A
86 84 85 rpcxpcld A + n + n A +
87 83 86 rerpdivcld A + n + log n n A
88 87 recnd A + n + log n n A
89 88 ralrimiva A + n + log n n A
90 89 80 rlim0lt A + n + log n n A 0 x + y n + y < n log n n A < x
91 69 81 90 3imtr4d A + m + m e A m 0 n + log n n A 0
92 6 91 mpd A + n + log n n A 0