Metamath Proof Explorer


Theorem cxploglim2

Description: Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016)

Ref Expression
Assertion cxploglim2 A B + n + log n A n B 0

Proof

Step Hyp Ref Expression
1 3re 3
2 1 a1i A B + 3
3 0red A B + 0
4 3 recnd A B + 0
5 ovexd A B + n + log n n B if 1 A A 1 V
6 simpr A B + B +
7 recl A A
8 7 adantr A B + A
9 1re 1
10 ifcl A 1 if 1 A A 1
11 8 9 10 sylancl A B + if 1 A A 1
12 9 a1i A B + 1
13 0lt1 0 < 1
14 13 a1i A B + 0 < 1
15 max1 1 A 1 if 1 A A 1
16 9 8 15 sylancr A B + 1 if 1 A A 1
17 3 12 11 14 16 ltletrd A B + 0 < if 1 A A 1
18 11 17 elrpd A B + if 1 A A 1 +
19 6 18 rpdivcld A B + B if 1 A A 1 +
20 cxploglim B if 1 A A 1 + n + log n n B if 1 A A 1 0
21 19 20 syl A B + n + log n n B if 1 A A 1 0
22 5 21 18 rlimcxp A B + n + log n n B if 1 A A 1 if 1 A A 1 0
23 5 21 rlimmptrcl A B + n + log n n B if 1 A A 1
24 11 adantr A B + n + if 1 A A 1
25 24 recnd A B + n + if 1 A A 1
26 23 25 cxpcld A B + n + log n n B if 1 A A 1 if 1 A A 1
27 relogcl n + log n
28 27 adantl A B + n + log n
29 28 recnd A B + n + log n
30 simpll A B + n + A
31 29 30 cxpcld A B + n + log n A
32 simpr A B + n + n +
33 rpre B + B
34 33 ad2antlr A B + n + B
35 32 34 rpcxpcld A B + n + n B +
36 35 rpcnd A B + n + n B
37 35 rpne0d A B + n + n B 0
38 31 36 37 divcld A B + n + log n A n B
39 38 adantrr A B + n + 3 n log n A n B
40 39 abscld A B + n + 3 n log n A n B
41 rpre n + n
42 41 ad2antrl A B + n + 3 n n
43 9 a1i A B + n + 3 n 1
44 1 a1i A B + n + 3 n 3
45 1lt3 1 < 3
46 45 a1i A B + n + 3 n 1 < 3
47 simprr A B + n + 3 n 3 n
48 43 44 42 46 47 ltletrd A B + n + 3 n 1 < n
49 42 48 rplogcld A B + n + 3 n log n +
50 32 adantrr A B + n + 3 n n +
51 33 ad2antlr A B + n + 3 n B
52 18 adantr A B + n + 3 n if 1 A A 1 +
53 51 52 rerpdivcld A B + n + 3 n B if 1 A A 1
54 50 53 rpcxpcld A B + n + 3 n n B if 1 A A 1 +
55 49 54 rpdivcld A B + n + 3 n log n n B if 1 A A 1 +
56 11 adantr A B + n + 3 n if 1 A A 1
57 55 56 rpcxpcld A B + n + 3 n log n n B if 1 A A 1 if 1 A A 1 +
58 57 rpred A B + n + 3 n log n n B if 1 A A 1 if 1 A A 1
59 26 adantrr A B + n + 3 n log n n B if 1 A A 1 if 1 A A 1
60 59 abscld A B + n + 3 n log n n B if 1 A A 1 if 1 A A 1
61 31 adantrr A B + n + 3 n log n A
62 61 abscld A B + n + 3 n log n A
63 49 56 rpcxpcld A B + n + 3 n log n if 1 A A 1 +
64 63 rpred A B + n + 3 n log n if 1 A A 1
65 35 adantrr A B + n + 3 n n B +
66 simpll A B + n + 3 n A
67 abscxp log n + A log n A = log n A
68 49 66 67 syl2anc A B + n + 3 n log n A = log n A
69 66 recld A B + n + 3 n A
70 max2 1 A A if 1 A A 1
71 9 69 70 sylancr A B + n + 3 n A if 1 A A 1
72 27 ad2antrl A B + n + 3 n log n
73 loge log e = 1
74 ere e
75 74 a1i A B + n + 3 n e
76 egt2lt3 2 < e e < 3
77 76 simpri e < 3
78 77 a1i A B + n + 3 n e < 3
79 75 44 42 78 47 ltletrd A B + n + 3 n e < n
80 epr e +
81 logltb e + n + e < n log e < log n
82 80 50 81 sylancr A B + n + 3 n e < n log e < log n
83 79 82 mpbid A B + n + 3 n log e < log n
84 73 83 eqbrtrrid A B + n + 3 n 1 < log n
85 72 84 69 56 cxpled A B + n + 3 n A if 1 A A 1 log n A log n if 1 A A 1
86 71 85 mpbid A B + n + 3 n log n A log n if 1 A A 1
87 68 86 eqbrtrd A B + n + 3 n log n A log n if 1 A A 1
88 62 64 65 87 lediv1dd A B + n + 3 n log n A n B log n if 1 A A 1 n B
89 31 36 37 absdivd A B + n + log n A n B = log n A n B
90 89 adantrr A B + n + 3 n log n A n B = log n A n B
91 65 rprege0d A B + n + 3 n n B 0 n B
92 absid n B 0 n B n B = n B
93 91 92 syl A B + n + 3 n n B = n B
94 93 oveq2d A B + n + 3 n log n A n B = log n A n B
95 90 94 eqtrd A B + n + 3 n log n A n B = log n A n B
96 49 rprege0d A B + n + 3 n log n 0 log n
97 11 recnd A B + if 1 A A 1
98 97 adantr A B + n + 3 n if 1 A A 1
99 divcxp log n 0 log n n B if 1 A A 1 + if 1 A A 1 log n n B if 1 A A 1 if 1 A A 1 = log n if 1 A A 1 n B if 1 A A 1 if 1 A A 1
100 96 54 98 99 syl3anc A B + n + 3 n log n n B if 1 A A 1 if 1 A A 1 = log n if 1 A A 1 n B if 1 A A 1 if 1 A A 1
101 50 53 98 cxpmuld A B + n + 3 n n B if 1 A A 1 if 1 A A 1 = n B if 1 A A 1 if 1 A A 1
102 51 recnd A B + n + 3 n B
103 52 rpne0d A B + n + 3 n if 1 A A 1 0
104 102 98 103 divcan1d A B + n + 3 n B if 1 A A 1 if 1 A A 1 = B
105 104 oveq2d A B + n + 3 n n B if 1 A A 1 if 1 A A 1 = n B
106 101 105 eqtr3d A B + n + 3 n n B if 1 A A 1 if 1 A A 1 = n B
107 106 oveq2d A B + n + 3 n log n if 1 A A 1 n B if 1 A A 1 if 1 A A 1 = log n if 1 A A 1 n B
108 100 107 eqtrd A B + n + 3 n log n n B if 1 A A 1 if 1 A A 1 = log n if 1 A A 1 n B
109 88 95 108 3brtr4d A B + n + 3 n log n A n B log n n B if 1 A A 1 if 1 A A 1
110 58 leabsd A B + n + 3 n log n n B if 1 A A 1 if 1 A A 1 log n n B if 1 A A 1 if 1 A A 1
111 40 58 60 109 110 letrd A B + n + 3 n log n A n B log n n B if 1 A A 1 if 1 A A 1
112 39 subid1d A B + n + 3 n log n A n B 0 = log n A n B
113 112 fveq2d A B + n + 3 n log n A n B 0 = log n A n B
114 59 subid1d A B + n + 3 n log n n B if 1 A A 1 if 1 A A 1 0 = log n n B if 1 A A 1 if 1 A A 1
115 114 fveq2d A B + n + 3 n log n n B if 1 A A 1 if 1 A A 1 0 = log n n B if 1 A A 1 if 1 A A 1
116 111 113 115 3brtr4d A B + n + 3 n log n A n B 0 log n n B if 1 A A 1 if 1 A A 1 0
117 2 4 22 26 38 116 rlimsqzlem A B + n + log n A n B 0