Metamath Proof Explorer


Theorem cxplt3

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion cxplt3 A + A < 1 B C B < C A C < A B

Proof

Step Hyp Ref Expression
1 simpll A + A < 1 B C A +
2 simprl A + A < 1 B C B
3 2 recnd A + A < 1 B C B
4 cxprec A + B 1 A B = 1 A B
5 1 3 4 syl2anc A + A < 1 B C 1 A B = 1 A B
6 simprr A + A < 1 B C C
7 6 recnd A + A < 1 B C C
8 cxprec A + C 1 A C = 1 A C
9 1 7 8 syl2anc A + A < 1 B C 1 A C = 1 A C
10 5 9 breq12d A + A < 1 B C 1 A B < 1 A C 1 A B < 1 A C
11 1 rprecred A + A < 1 B C 1 A
12 simplr A + A < 1 B C A < 1
13 1 reclt1d A + A < 1 B C A < 1 1 < 1 A
14 12 13 mpbid A + A < 1 B C 1 < 1 A
15 cxplt 1 A 1 < 1 A B C B < C 1 A B < 1 A C
16 11 14 2 6 15 syl22anc A + A < 1 B C B < C 1 A B < 1 A C
17 rpcxpcl A + C A C +
18 17 ad2ant2rl A + A < 1 B C A C +
19 rpcxpcl A + B A B +
20 19 ad2ant2r A + A < 1 B C A B +
21 18 20 ltrecd A + A < 1 B C A C < A B 1 A B < 1 A C
22 10 16 21 3bitr4d A + A < 1 B C B < C A C < A B