Metamath Proof Explorer


Theorem cxpltd

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φ A
cxpltd.2 φ 1 < A
cxpltd.3 φ B
cxpltd.4 φ C
Assertion cxpltd φ B < C A B < A C

Proof

Step Hyp Ref Expression
1 recxpcld.1 φ A
2 cxpltd.2 φ 1 < A
3 cxpltd.3 φ B
4 cxpltd.4 φ C
5 cxplt A 1 < A B C B < C A B < A C
6 1 2 3 4 5 syl22anc φ B < C A B < A C