Metamath Proof Explorer


Theorem cxpmul

Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpmul A + B C A B C = A B C

Proof

Step Hyp Ref Expression
1 simp3 A + B C C
2 simp2 A + B C B
3 2 recnd A + B C B
4 relogcl A + log A
5 4 3ad2ant1 A + B C log A
6 5 recnd A + B C log A
7 1 3 6 mulassd A + B C C B log A = C B log A
8 3 1 mulcomd A + B C B C = C B
9 8 oveq1d A + B C B C log A = C B log A
10 rpcn A + A
11 10 3ad2ant1 A + B C A
12 rpne0 A + A 0
13 12 3ad2ant1 A + B C A 0
14 cxpef A A 0 B A B = e B log A
15 11 13 3 14 syl3anc A + B C A B = e B log A
16 15 fveq2d A + B C log A B = log e B log A
17 2 5 remulcld A + B C B log A
18 17 relogefd A + B C log e B log A = B log A
19 16 18 eqtrd A + B C log A B = B log A
20 19 oveq2d A + B C C log A B = C B log A
21 7 9 20 3eqtr4d A + B C B C log A = C log A B
22 21 fveq2d A + B C e B C log A = e C log A B
23 3 1 mulcld A + B C B C
24 cxpef A A 0 B C A B C = e B C log A
25 11 13 23 24 syl3anc A + B C A B C = e B C log A
26 cxpcl A B A B
27 11 3 26 syl2anc A + B C A B
28 cxpne0 A A 0 B A B 0
29 11 13 3 28 syl3anc A + B C A B 0
30 cxpef A B A B 0 C A B C = e C log A B
31 27 29 1 30 syl3anc A + B C A B C = e C log A B
32 22 25 31 3eqtr4d A + B C A B C = A B C