| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
oveq2d |
|
| 3 |
|
oveq2 |
|
| 4 |
2 3
|
eqeq12d |
|
| 5 |
4
|
imbi2d |
|
| 6 |
|
oveq2 |
|
| 7 |
6
|
oveq2d |
|
| 8 |
|
oveq2 |
|
| 9 |
7 8
|
eqeq12d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
|
oveq2 |
|
| 14 |
12 13
|
eqeq12d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
|
oveq2 |
|
| 19 |
17 18
|
eqeq12d |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
cxp0 |
|
| 22 |
21
|
adantr |
|
| 23 |
|
mul01 |
|
| 24 |
23
|
adantl |
|
| 25 |
24
|
oveq2d |
|
| 26 |
|
cxpcl |
|
| 27 |
26
|
exp0d |
|
| 28 |
22 25 27
|
3eqtr4d |
|
| 29 |
|
oveq1 |
|
| 30 |
|
0cn |
|
| 31 |
|
cxp0 |
|
| 32 |
30 31
|
ax-mp |
|
| 33 |
|
1t1e1 |
|
| 34 |
32 33
|
eqtr4i |
|
| 35 |
|
simplr |
|
| 36 |
|
simpr |
|
| 37 |
36
|
oveq1d |
|
| 38 |
|
nn0p1nn |
|
| 39 |
38
|
adantl |
|
| 40 |
39
|
nncnd |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
41
|
mul02d |
|
| 43 |
37 42
|
eqtrd |
|
| 44 |
35 43
|
oveq12d |
|
| 45 |
36
|
oveq1d |
|
| 46 |
|
nn0cn |
|
| 47 |
46
|
adantl |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
48
|
mul02d |
|
| 50 |
45 49
|
eqtrd |
|
| 51 |
35 50
|
oveq12d |
|
| 52 |
51 32
|
eqtrdi |
|
| 53 |
35 36
|
oveq12d |
|
| 54 |
53 32
|
eqtrdi |
|
| 55 |
52 54
|
oveq12d |
|
| 56 |
34 44 55
|
3eqtr4a |
|
| 57 |
|
simpll |
|
| 58 |
57
|
ad2antrr |
|
| 59 |
|
simplr |
|
| 60 |
59 47
|
mulcld |
|
| 61 |
60
|
ad2antrr |
|
| 62 |
|
cxpcl |
|
| 63 |
58 61 62
|
syl2anc |
|
| 64 |
63
|
mul01d |
|
| 65 |
|
simplr |
|
| 66 |
65
|
oveq1d |
|
| 67 |
59
|
ad2antrr |
|
| 68 |
|
simpr |
|
| 69 |
|
0cxp |
|
| 70 |
67 68 69
|
syl2anc |
|
| 71 |
66 70
|
eqtrd |
|
| 72 |
71
|
oveq2d |
|
| 73 |
65
|
oveq1d |
|
| 74 |
40
|
ad2antrr |
|
| 75 |
67 74
|
mulcld |
|
| 76 |
39
|
nnne0d |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
67 74 68 77
|
mulne0d |
|
| 79 |
|
0cxp |
|
| 80 |
75 78 79
|
syl2anc |
|
| 81 |
73 80
|
eqtrd |
|
| 82 |
64 72 81
|
3eqtr4rd |
|
| 83 |
56 82
|
pm2.61dane |
|
| 84 |
59
|
adantr |
|
| 85 |
47
|
adantr |
|
| 86 |
|
1cnd |
|
| 87 |
84 85 86
|
adddid |
|
| 88 |
84
|
mulridd |
|
| 89 |
88
|
oveq2d |
|
| 90 |
87 89
|
eqtrd |
|
| 91 |
90
|
oveq2d |
|
| 92 |
57
|
adantr |
|
| 93 |
|
simpr |
|
| 94 |
60
|
adantr |
|
| 95 |
|
cxpadd |
|
| 96 |
92 93 94 84 95
|
syl211anc |
|
| 97 |
91 96
|
eqtrd |
|
| 98 |
83 97
|
pm2.61dane |
|
| 99 |
|
expp1 |
|
| 100 |
26 99
|
sylan |
|
| 101 |
98 100
|
eqeq12d |
|
| 102 |
29 101
|
imbitrrid |
|
| 103 |
102
|
expcom |
|
| 104 |
103
|
a2d |
|
| 105 |
5 10 15 20 28 104
|
nn0ind |
|
| 106 |
105
|
com12 |
|
| 107 |
106
|
3impia |
|