Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq2d |
|
3 |
|
oveq2 |
|
4 |
2 3
|
eqeq12d |
|
5 |
4
|
imbi2d |
|
6 |
|
oveq2 |
|
7 |
6
|
oveq2d |
|
8 |
|
oveq2 |
|
9 |
7 8
|
eqeq12d |
|
10 |
9
|
imbi2d |
|
11 |
|
oveq2 |
|
12 |
11
|
oveq2d |
|
13 |
|
oveq2 |
|
14 |
12 13
|
eqeq12d |
|
15 |
14
|
imbi2d |
|
16 |
|
oveq2 |
|
17 |
16
|
oveq2d |
|
18 |
|
oveq2 |
|
19 |
17 18
|
eqeq12d |
|
20 |
19
|
imbi2d |
|
21 |
|
cxp0 |
|
22 |
21
|
adantr |
|
23 |
|
mul01 |
|
24 |
23
|
adantl |
|
25 |
24
|
oveq2d |
|
26 |
|
cxpcl |
|
27 |
26
|
exp0d |
|
28 |
22 25 27
|
3eqtr4d |
|
29 |
|
oveq1 |
|
30 |
|
0cn |
|
31 |
|
cxp0 |
|
32 |
30 31
|
ax-mp |
|
33 |
|
1t1e1 |
|
34 |
32 33
|
eqtr4i |
|
35 |
|
simplr |
|
36 |
|
simpr |
|
37 |
36
|
oveq1d |
|
38 |
|
nn0p1nn |
|
39 |
38
|
adantl |
|
40 |
39
|
nncnd |
|
41 |
40
|
ad2antrr |
|
42 |
41
|
mul02d |
|
43 |
37 42
|
eqtrd |
|
44 |
35 43
|
oveq12d |
|
45 |
36
|
oveq1d |
|
46 |
|
nn0cn |
|
47 |
46
|
adantl |
|
48 |
47
|
ad2antrr |
|
49 |
48
|
mul02d |
|
50 |
45 49
|
eqtrd |
|
51 |
35 50
|
oveq12d |
|
52 |
51 32
|
eqtrdi |
|
53 |
35 36
|
oveq12d |
|
54 |
53 32
|
eqtrdi |
|
55 |
52 54
|
oveq12d |
|
56 |
34 44 55
|
3eqtr4a |
|
57 |
|
simpll |
|
58 |
57
|
ad2antrr |
|
59 |
|
simplr |
|
60 |
59 47
|
mulcld |
|
61 |
60
|
ad2antrr |
|
62 |
|
cxpcl |
|
63 |
58 61 62
|
syl2anc |
|
64 |
63
|
mul01d |
|
65 |
|
simplr |
|
66 |
65
|
oveq1d |
|
67 |
59
|
ad2antrr |
|
68 |
|
simpr |
|
69 |
|
0cxp |
|
70 |
67 68 69
|
syl2anc |
|
71 |
66 70
|
eqtrd |
|
72 |
71
|
oveq2d |
|
73 |
65
|
oveq1d |
|
74 |
40
|
ad2antrr |
|
75 |
67 74
|
mulcld |
|
76 |
39
|
nnne0d |
|
77 |
76
|
ad2antrr |
|
78 |
67 74 68 77
|
mulne0d |
|
79 |
|
0cxp |
|
80 |
75 78 79
|
syl2anc |
|
81 |
73 80
|
eqtrd |
|
82 |
64 72 81
|
3eqtr4rd |
|
83 |
56 82
|
pm2.61dane |
|
84 |
59
|
adantr |
|
85 |
47
|
adantr |
|
86 |
|
1cnd |
|
87 |
84 85 86
|
adddid |
|
88 |
84
|
mulid1d |
|
89 |
88
|
oveq2d |
|
90 |
87 89
|
eqtrd |
|
91 |
90
|
oveq2d |
|
92 |
57
|
adantr |
|
93 |
|
simpr |
|
94 |
60
|
adantr |
|
95 |
|
cxpadd |
|
96 |
92 93 94 84 95
|
syl211anc |
|
97 |
91 96
|
eqtrd |
|
98 |
83 97
|
pm2.61dane |
|
99 |
|
expp1 |
|
100 |
26 99
|
sylan |
|
101 |
98 100
|
eqeq12d |
|
102 |
29 101
|
syl5ibr |
|
103 |
102
|
expcom |
|
104 |
103
|
a2d |
|
105 |
5 10 15 20 28 104
|
nn0ind |
|
106 |
105
|
com12 |
|
107 |
106
|
3impia |
|