Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
cxpmuld
Metamath Proof Explorer
Description: Product of exponents law for complex exponentiation. Proposition
10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro , 30-May-2016)
Ref
Expression
Hypotheses
rpcxpcld.1
⊢ φ → A ∈ ℝ +
rpcxpcld.2
⊢ φ → B ∈ ℝ
cxpmuld.4
⊢ φ → C ∈ ℂ
Assertion
cxpmuld
⊢ φ → A B ⁢ C = A B C
Proof
Step
Hyp
Ref
Expression
1
rpcxpcld.1
⊢ φ → A ∈ ℝ +
2
rpcxpcld.2
⊢ φ → B ∈ ℝ
3
cxpmuld.4
⊢ φ → C ∈ ℂ
4
cxpmul
⊢ A ∈ ℝ + ∧ B ∈ ℝ ∧ C ∈ ℂ → A B ⁢ C = A B C
5
1 2 3 4
syl3anc
⊢ φ → A B ⁢ C = A B C