Metamath Proof Explorer


Theorem cxpmuld

Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rpcxpcld.1 φ A +
rpcxpcld.2 φ B
cxpmuld.4 φ C
Assertion cxpmuld φ A B C = A B C

Proof

Step Hyp Ref Expression
1 rpcxpcld.1 φ A +
2 rpcxpcld.2 φ B
3 cxpmuld.4 φ C
4 cxpmul A + B C A B C = A B C
5 1 2 3 4 syl3anc φ A B C = A B C