Metamath Proof Explorer


Theorem cxpne0

Description: Complex exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpne0 A A 0 B A B 0

Proof

Step Hyp Ref Expression
1 cxpef A A 0 B A B = e B log A
2 id B B
3 logcl A A 0 log A
4 mulcl B log A B log A
5 2 3 4 syl2anr A A 0 B B log A
6 5 3impa A A 0 B B log A
7 efne0 B log A e B log A 0
8 6 7 syl A A 0 B e B log A 0
9 1 8 eqnetrd A A 0 B A B 0