Metamath Proof Explorer


Theorem cxpne0d

Description: Complex exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φ A
cxpefd.2 φ A 0
cxpefd.3 φ B
Assertion cxpne0d φ A B 0

Proof

Step Hyp Ref Expression
1 cxp0d.1 φ A
2 cxpefd.2 φ A 0
3 cxpefd.3 φ B
4 cxpne0 A A 0 B A B 0
5 1 2 3 4 syl3anc φ A B 0