Metamath Proof Explorer


Theorem cxpnegd

Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φ A
cxpefd.2 φ A 0
cxpefd.3 φ B
Assertion cxpnegd φ A B = 1 A B

Proof

Step Hyp Ref Expression
1 cxp0d.1 φ A
2 cxpefd.2 φ A 0
3 cxpefd.3 φ B
4 cxpneg A A 0 B A B = 1 A B
5 1 2 3 4 syl3anc φ A B = 1 A B