Metamath Proof Explorer


Theorem cxprecd

Description: Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rpcxpcld.1 φ A +
cxprecd.2 φ B
Assertion cxprecd φ 1 A B = 1 A B

Proof

Step Hyp Ref Expression
1 rpcxpcld.1 φ A +
2 cxprecd.2 φ B
3 cxprec A + B 1 A B = 1 A B
4 1 2 3 syl2anc φ 1 A B = 1 A B