Metamath Proof Explorer


Theorem cxproot

Description: The complex power function allows us to write n-th roots via the idiom A ^c ( 1 / N ) . (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion cxproot A N A 1 N N = A

Proof

Step Hyp Ref Expression
1 nncn N N
2 1 adantl A N N
3 nnne0 N N 0
4 3 adantl A N N 0
5 2 4 recid2d A N 1 N N = 1
6 5 oveq2d A N A 1 N N = A 1
7 simpl A N A
8 nnrecre N 1 N
9 8 adantl A N 1 N
10 9 recnd A N 1 N
11 nnnn0 N N 0
12 11 adantl A N N 0
13 cxpmul2 A 1 N N 0 A 1 N N = A 1 N N
14 7 10 12 13 syl3anc A N A 1 N N = A 1 N N
15 cxp1 A A 1 = A
16 15 adantr A N A 1 = A
17 6 14 16 3eqtr3d A N A 1 N N = A