Metamath Proof Explorer


Theorem cxpsqrt

Description: The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other n -th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpsqrt A A 1 2 = A

Proof

Step Hyp Ref Expression
1 halfcn 1 2
2 halfre 1 2
3 halfgt0 0 < 1 2
4 2 3 gt0ne0ii 1 2 0
5 0cxp 1 2 1 2 0 0 1 2 = 0
6 1 4 5 mp2an 0 1 2 = 0
7 sqrt0 0 = 0
8 6 7 eqtr4i 0 1 2 = 0
9 oveq1 A = 0 A 1 2 = 0 1 2
10 fveq2 A = 0 A = 0
11 8 9 10 3eqtr4a A = 0 A 1 2 = A
12 11 a1i A A = 0 A 1 2 = A
13 ax-icn i
14 sqrtcl A A
15 14 ad2antrr A A 0 A 1 2 = A A
16 sqmul i A i A 2 = i 2 A 2
17 13 15 16 sylancr A A 0 A 1 2 = A i A 2 = i 2 A 2
18 i2 i 2 = 1
19 18 a1i A A 0 A 1 2 = A i 2 = 1
20 sqrtth A A 2 = A
21 20 ad2antrr A A 0 A 1 2 = A A 2 = A
22 19 21 oveq12d A A 0 A 1 2 = A i 2 A 2 = -1 A
23 mulm1 A -1 A = A
24 23 ad2antrr A A 0 A 1 2 = A -1 A = A
25 17 22 24 3eqtrd A A 0 A 1 2 = A i A 2 = A
26 cxpsqrtlem A A 0 A 1 2 = A i A
27 26 resqcld A A 0 A 1 2 = A i A 2
28 25 27 eqeltrrd A A 0 A 1 2 = A A
29 negeq0 A A = 0 A = 0
30 29 necon3bid A A 0 A 0
31 30 biimpa A A 0 A 0
32 31 adantr A A 0 A 1 2 = A A 0
33 25 32 eqnetrd A A 0 A 1 2 = A i A 2 0
34 sq0i i A = 0 i A 2 = 0
35 34 necon3i i A 2 0 i A 0
36 33 35 syl A A 0 A 1 2 = A i A 0
37 26 36 sqgt0d A A 0 A 1 2 = A 0 < i A 2
38 37 25 breqtrd A A 0 A 1 2 = A 0 < A
39 28 38 elrpd A A 0 A 1 2 = A A +
40 logneg A + log A = log A + i π
41 39 40 syl A A 0 A 1 2 = A log A = log A + i π
42 negneg A A = A
43 42 ad2antrr A A 0 A 1 2 = A A = A
44 43 fveq2d A A 0 A 1 2 = A log A = log A
45 39 relogcld A A 0 A 1 2 = A log A
46 45 recnd A A 0 A 1 2 = A log A
47 picn π
48 13 47 mulcli i π
49 addcom log A i π log A + i π = i π + log A
50 46 48 49 sylancl A A 0 A 1 2 = A log A + i π = i π + log A
51 41 44 50 3eqtr3d A A 0 A 1 2 = A log A = i π + log A
52 51 oveq2d A A 0 A 1 2 = A 1 2 log A = 1 2 i π + log A
53 adddi 1 2 i π log A 1 2 i π + log A = 1 2 i π + 1 2 log A
54 1 48 46 53 mp3an12i A A 0 A 1 2 = A 1 2 i π + log A = 1 2 i π + 1 2 log A
55 52 54 eqtrd A A 0 A 1 2 = A 1 2 log A = 1 2 i π + 1 2 log A
56 2cn 2
57 2ne0 2 0
58 divrec2 i π 2 2 0 i π 2 = 1 2 i π
59 48 56 57 58 mp3an i π 2 = 1 2 i π
60 13 47 56 57 divassi i π 2 = i π 2
61 59 60 eqtr3i 1 2 i π = i π 2
62 61 oveq1i 1 2 i π + 1 2 log A = i π 2 + 1 2 log A
63 55 62 eqtrdi A A 0 A 1 2 = A 1 2 log A = i π 2 + 1 2 log A
64 63 fveq2d A A 0 A 1 2 = A e 1 2 log A = e i π 2 + 1 2 log A
65 47 56 57 divcli π 2
66 13 65 mulcli i π 2
67 mulcl 1 2 log A 1 2 log A
68 1 46 67 sylancr A A 0 A 1 2 = A 1 2 log A
69 efadd i π 2 1 2 log A e i π 2 + 1 2 log A = e i π 2 e 1 2 log A
70 66 68 69 sylancr A A 0 A 1 2 = A e i π 2 + 1 2 log A = e i π 2 e 1 2 log A
71 efhalfpi e i π 2 = i
72 71 a1i A A 0 A 1 2 = A e i π 2 = i
73 negcl A A
74 73 ad2antrr A A 0 A 1 2 = A A
75 1 a1i A A 0 A 1 2 = A 1 2
76 cxpef A A 0 1 2 A 1 2 = e 1 2 log A
77 74 32 75 76 syl3anc A A 0 A 1 2 = A A 1 2 = e 1 2 log A
78 ax-1cn 1
79 2halves 1 1 2 + 1 2 = 1
80 78 79 ax-mp 1 2 + 1 2 = 1
81 80 oveq2i A 1 2 + 1 2 = A 1
82 cxp1 A A 1 = A
83 74 82 syl A A 0 A 1 2 = A A 1 = A
84 81 83 syl5eq A A 0 A 1 2 = A A 1 2 + 1 2 = A
85 rpcxpcl A + 1 2 A 1 2 +
86 39 2 85 sylancl A A 0 A 1 2 = A A 1 2 +
87 86 rpcnd A A 0 A 1 2 = A A 1 2
88 87 sqvald A A 0 A 1 2 = A A 1 2 2 = A 1 2 A 1 2
89 cxpadd A A 0 1 2 1 2 A 1 2 + 1 2 = A 1 2 A 1 2
90 74 32 75 75 89 syl211anc A A 0 A 1 2 = A A 1 2 + 1 2 = A 1 2 A 1 2
91 88 90 eqtr4d A A 0 A 1 2 = A A 1 2 2 = A 1 2 + 1 2
92 74 sqsqrtd A A 0 A 1 2 = A A 2 = A
93 84 91 92 3eqtr4d A A 0 A 1 2 = A A 1 2 2 = A 2
94 86 rprege0d A A 0 A 1 2 = A A 1 2 0 A 1 2
95 39 rpsqrtcld A A 0 A 1 2 = A A +
96 95 rprege0d A A 0 A 1 2 = A A 0 A
97 sq11 A 1 2 0 A 1 2 A 0 A A 1 2 2 = A 2 A 1 2 = A
98 94 96 97 syl2anc A A 0 A 1 2 = A A 1 2 2 = A 2 A 1 2 = A
99 93 98 mpbid A A 0 A 1 2 = A A 1 2 = A
100 77 99 eqtr3d A A 0 A 1 2 = A e 1 2 log A = A
101 72 100 oveq12d A A 0 A 1 2 = A e i π 2 e 1 2 log A = i A
102 64 70 101 3eqtrd A A 0 A 1 2 = A e 1 2 log A = i A
103 cxpef A A 0 1 2 A 1 2 = e 1 2 log A
104 1 103 mp3an3 A A 0 A 1 2 = e 1 2 log A
105 104 adantr A A 0 A 1 2 = A A 1 2 = e 1 2 log A
106 43 fveq2d A A 0 A 1 2 = A A = A
107 39 rpge0d A A 0 A 1 2 = A 0 A
108 28 107 sqrtnegd A A 0 A 1 2 = A A = i A
109 106 108 eqtr3d A A 0 A 1 2 = A A = i A
110 102 105 109 3eqtr4d A A 0 A 1 2 = A A 1 2 = A
111 110 ex A A 0 A 1 2 = A A 1 2 = A
112 80 oveq2i A 1 2 + 1 2 = A 1
113 cxpadd A A 0 1 2 1 2 A 1 2 + 1 2 = A 1 2 A 1 2
114 1 1 113 mp3an23 A A 0 A 1 2 + 1 2 = A 1 2 A 1 2
115 cxp1 A A 1 = A
116 115 adantr A A 0 A 1 = A
117 112 114 116 3eqtr3a A A 0 A 1 2 A 1 2 = A
118 cxpcl A 1 2 A 1 2
119 1 118 mpan2 A A 1 2
120 119 sqvald A A 1 2 2 = A 1 2 A 1 2
121 120 adantr A A 0 A 1 2 2 = A 1 2 A 1 2
122 20 adantr A A 0 A 2 = A
123 117 121 122 3eqtr4d A A 0 A 1 2 2 = A 2
124 sqeqor A 1 2 A A 1 2 2 = A 2 A 1 2 = A A 1 2 = A
125 119 14 124 syl2anc A A 1 2 2 = A 2 A 1 2 = A A 1 2 = A
126 125 biimpa A A 1 2 2 = A 2 A 1 2 = A A 1 2 = A
127 123 126 syldan A A 0 A 1 2 = A A 1 2 = A
128 127 ord A A 0 ¬ A 1 2 = A A 1 2 = A
129 128 con1d A A 0 ¬ A 1 2 = A A 1 2 = A
130 111 129 pm2.61d A A 0 A 1 2 = A
131 130 ex A A 0 A 1 2 = A
132 12 131 pm2.61dne A A 1 2 = A