Metamath Proof Explorer


Theorem cxpsqrtth

Description: Square root theorem over the complex numbers for the complex power function. Theorem I.35 of Apostol p. 29. Compare with sqrtth . (Contributed by AV, 23-Dec-2022)

Ref Expression
Assertion cxpsqrtth A A 2 = A

Proof

Step Hyp Ref Expression
1 2cnne0 2 2 0
2 0cxp 2 2 0 0 2 = 0
3 1 2 ax-mp 0 2 = 0
4 fveq2 A = 0 A = 0
5 sqrt0 0 = 0
6 4 5 eqtrdi A = 0 A = 0
7 6 oveq1d A = 0 A 2 = 0 2
8 id A = 0 A = 0
9 3 7 8 3eqtr4a A = 0 A 2 = A
10 9 a1d A = 0 A A 2 = A
11 sqrtcl A A
12 11 adantr A A 0 A
13 simpl A A = 0 A
14 simpr A A = 0 A = 0
15 13 14 sqr00d A A = 0 A = 0
16 15 ex A A = 0 A = 0
17 16 necon3d A A 0 A 0
18 17 imp A A 0 A 0
19 2z 2
20 19 a1i A A 0 2
21 12 18 20 cxpexpzd A A 0 A 2 = A 2
22 sqrtth A A 2 = A
23 22 adantr A A 0 A 2 = A
24 21 23 eqtrd A A 0 A 2 = A
25 24 expcom A 0 A A 2 = A
26 10 25 pm2.61ine A A 2 = A