Metamath Proof Explorer


Theorem cxpsub

Description: Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion cxpsub AA0BCABC=ABAC

Proof

Step Hyp Ref Expression
1 negcl CC
2 cxpadd AA0BCAB+C=ABAC
3 1 2 syl3an3 AA0BCAB+C=ABAC
4 simp2 AA0BCB
5 simp3 AA0BCC
6 4 5 negsubd AA0BCB+C=BC
7 6 oveq2d AA0BCAB+C=ABC
8 simp1l AA0BCA
9 simp1r AA0BCA0
10 cxpneg AA0CAC=1AC
11 8 9 5 10 syl3anc AA0BCAC=1AC
12 11 oveq2d AA0BCABAC=AB1AC
13 cxpcl ABAB
14 8 4 13 syl2anc AA0BCAB
15 cxpcl ACAC
16 8 5 15 syl2anc AA0BCAC
17 cxpne0 AA0CAC0
18 8 9 5 17 syl3anc AA0BCAC0
19 14 16 18 divrecd AA0BCABAC=AB1AC
20 12 19 eqtr4d AA0BCABAC=ABAC
21 3 7 20 3eqtr3d AA0BCABC=ABAC