Metamath Proof Explorer
Description: Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
cxp0d.1 |
|
|
|
cxpefd.2 |
|
|
|
cxpefd.3 |
|
|
|
cxpaddd.4 |
|
|
Assertion |
cxpsubd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cxp0d.1 |
|
2 |
|
cxpefd.2 |
|
3 |
|
cxpefd.3 |
|
4 |
|
cxpaddd.4 |
|
5 |
|
cxpsub |
|
6 |
1 2 3 4 5
|
syl211anc |
|