Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
cxpval
Next ⟩
cxpef
Metamath Proof Explorer
Ascii
Unicode
Theorem
cxpval
Description:
Value of the complex power function.
(Contributed by
Mario Carneiro
, 2-Aug-2014)
Ref
Expression
Assertion
cxpval
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
=
if
A
=
0
if
B
=
0
1
0
e
B
⁢
log
⁡
A
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
x
=
A
∧
y
=
B
→
x
=
A
2
1
eqeq1d
⊢
x
=
A
∧
y
=
B
→
x
=
0
↔
A
=
0
3
simpr
⊢
x
=
A
∧
y
=
B
→
y
=
B
4
3
eqeq1d
⊢
x
=
A
∧
y
=
B
→
y
=
0
↔
B
=
0
5
4
ifbid
⊢
x
=
A
∧
y
=
B
→
if
y
=
0
1
0
=
if
B
=
0
1
0
6
1
fveq2d
⊢
x
=
A
∧
y
=
B
→
log
⁡
x
=
log
⁡
A
7
3
6
oveq12d
⊢
x
=
A
∧
y
=
B
→
y
⁢
log
⁡
x
=
B
⁢
log
⁡
A
8
7
fveq2d
⊢
x
=
A
∧
y
=
B
→
e
y
⁢
log
⁡
x
=
e
B
⁢
log
⁡
A
9
2
5
8
ifbieq12d
⊢
x
=
A
∧
y
=
B
→
if
x
=
0
if
y
=
0
1
0
e
y
⁢
log
⁡
x
=
if
A
=
0
if
B
=
0
1
0
e
B
⁢
log
⁡
A
10
df-cxp
⊢
↑
c
=
x
∈
ℂ
,
y
∈
ℂ
⟼
if
x
=
0
if
y
=
0
1
0
e
y
⁢
log
⁡
x
11
ax-1cn
⊢
1
∈
ℂ
12
0cn
⊢
0
∈
ℂ
13
11
12
ifcli
⊢
if
B
=
0
1
0
∈
ℂ
14
13
elexi
⊢
if
B
=
0
1
0
∈
V
15
fvex
⊢
e
B
⁢
log
⁡
A
∈
V
16
14
15
ifex
⊢
if
A
=
0
if
B
=
0
1
0
e
B
⁢
log
⁡
A
∈
V
17
9
10
16
ovmpoa
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
=
if
A
=
0
if
B
=
0
1
0
e
B
⁢
log
⁡
A