Metamath Proof Explorer


Theorem cycliscrct

Description: A cycle is a circuit. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 31-Jan-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Assertion cycliscrct F Cycles G P F Circuits G P

Proof

Step Hyp Ref Expression
1 pthistrl F Paths G P F Trails G P
2 1 anim1i F Paths G P P 0 = P F F Trails G P P 0 = P F
3 iscycl F Cycles G P F Paths G P P 0 = P F
4 iscrct F Circuits G P F Trails G P P 0 = P F
5 2 3 4 3imtr4i F Cycles G P F Circuits G P