Metamath Proof Explorer


Theorem cycliswlk

Description: A cycle is a walk. (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 31-Jan-2021)

Ref Expression
Assertion cycliswlk F Cycles G P F Walks G P

Proof

Step Hyp Ref Expression
1 cyclispth F Cycles G P F Paths G P
2 pthiswlk F Paths G P F Walks G P
3 1 2 syl F Cycles G P F Walks G P