Metamath Proof Explorer


Theorem cyclnspth

Description: A (non-trivial) cycle is not a simple path. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 31-Jan-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Assertion cyclnspth F F Cycles G P ¬ F SPaths G P

Proof

Step Hyp Ref Expression
1 iscycl F Cycles G P F Paths G P P 0 = P F
2 relpths Rel Paths G
3 2 brrelex1i F Paths G P F V
4 hasheq0 F V F = 0 F =
5 4 necon3bid F V F 0 F
6 5 bicomd F V F F 0
7 3 6 syl F Paths G P F F 0
8 7 biimpa F Paths G P F F 0
9 spthdep F SPaths G P F 0 P 0 P F
10 9 neneqd F SPaths G P F 0 ¬ P 0 = P F
11 10 expcom F 0 F SPaths G P ¬ P 0 = P F
12 8 11 syl F Paths G P F F SPaths G P ¬ P 0 = P F
13 12 con2d F Paths G P F P 0 = P F ¬ F SPaths G P
14 13 impancom F Paths G P P 0 = P F F ¬ F SPaths G P
15 1 14 sylbi F Cycles G P F ¬ F SPaths G P
16 15 com12 F F Cycles G P ¬ F SPaths G P