Metamath Proof Explorer


Theorem cycsubg2

Description: The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cycsubg2.x X = Base G
cycsubg2.t · ˙ = G
cycsubg2.f F = x x · ˙ A
cycsubg2.k K = mrCls SubGrp G
Assertion cycsubg2 G Grp A X K A = ran F

Proof

Step Hyp Ref Expression
1 cycsubg2.x X = Base G
2 cycsubg2.t · ˙ = G
3 cycsubg2.f F = x x · ˙ A
4 cycsubg2.k K = mrCls SubGrp G
5 snssg A X A y A y
6 5 bicomd A X A y A y
7 6 adantl G Grp A X A y A y
8 7 rabbidv G Grp A X y SubGrp G | A y = y SubGrp G | A y
9 8 inteqd G Grp A X y SubGrp G | A y = y SubGrp G | A y
10 1 subgacs G Grp SubGrp G ACS X
11 10 acsmred G Grp SubGrp G Moore X
12 snssi A X A X
13 4 mrcval SubGrp G Moore X A X K A = y SubGrp G | A y
14 11 12 13 syl2an G Grp A X K A = y SubGrp G | A y
15 1 2 3 cycsubg G Grp A X ran F = y SubGrp G | A y
16 9 14 15 3eqtr4d G Grp A X K A = ran F