Metamath Proof Explorer


Theorem cycsubg2cl

Description: Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses cycsubg2cl.x X = Base G
cycsubg2cl.t · ˙ = G
cycsubg2cl.k K = mrCls SubGrp G
Assertion cycsubg2cl G Grp A X N N · ˙ A K A

Proof

Step Hyp Ref Expression
1 cycsubg2cl.x X = Base G
2 cycsubg2cl.t · ˙ = G
3 cycsubg2cl.k K = mrCls SubGrp G
4 1 subgacs G Grp SubGrp G ACS X
5 4 acsmred G Grp SubGrp G Moore X
6 5 3ad2ant1 G Grp A X N SubGrp G Moore X
7 simp2 G Grp A X N A X
8 7 snssd G Grp A X N A X
9 3 mrccl SubGrp G Moore X A X K A SubGrp G
10 6 8 9 syl2anc G Grp A X N K A SubGrp G
11 simp3 G Grp A X N N
12 6 3 8 mrcssidd G Grp A X N A K A
13 snssg A X A K A A K A
14 13 3ad2ant2 G Grp A X N A K A A K A
15 12 14 mpbird G Grp A X N A K A
16 2 subgmulgcl K A SubGrp G N A K A N · ˙ A K A
17 10 11 15 16 syl3anc G Grp A X N N · ˙ A K A