Metamath Proof Explorer


Theorem cycsubg2cl

Description: Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses cycsubg2cl.x X=BaseG
cycsubg2cl.t ·˙=G
cycsubg2cl.k K=mrClsSubGrpG
Assertion cycsubg2cl GGrpAXNN·˙AKA

Proof

Step Hyp Ref Expression
1 cycsubg2cl.x X=BaseG
2 cycsubg2cl.t ·˙=G
3 cycsubg2cl.k K=mrClsSubGrpG
4 1 subgacs GGrpSubGrpGACSX
5 4 acsmred GGrpSubGrpGMooreX
6 5 3ad2ant1 GGrpAXNSubGrpGMooreX
7 simp2 GGrpAXNAX
8 7 snssd GGrpAXNAX
9 3 mrccl SubGrpGMooreXAXKASubGrpG
10 6 8 9 syl2anc GGrpAXNKASubGrpG
11 simp3 GGrpAXNN
12 6 3 8 mrcssidd GGrpAXNAKA
13 snssg AXAKAAKA
14 13 3ad2ant2 GGrpAXNAKAAKA
15 12 14 mpbird GGrpAXNAKA
16 2 subgmulgcl KASubGrpGNAKAN·˙AKA
17 10 11 15 16 syl3anc GGrpAXNN·˙AKA