Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubg.x |
|
2 |
|
cycsubg.t |
|
3 |
|
cycsubg.f |
|
4 |
1 2
|
mulgcl |
|
5 |
4
|
3expa |
|
6 |
5
|
an32s |
|
7 |
6 3
|
fmptd |
|
8 |
7
|
frnd |
|
9 |
7
|
ffnd |
|
10 |
|
1z |
|
11 |
|
fnfvelrn |
|
12 |
9 10 11
|
sylancl |
|
13 |
12
|
ne0d |
|
14 |
|
df-3an |
|
15 |
|
eqid |
|
16 |
1 2 15
|
mulgdir |
|
17 |
14 16
|
sylan2br |
|
18 |
17
|
anass1rs |
|
19 |
|
zaddcl |
|
20 |
19
|
adantl |
|
21 |
|
oveq1 |
|
22 |
|
ovex |
|
23 |
21 3 22
|
fvmpt |
|
24 |
20 23
|
syl |
|
25 |
|
oveq1 |
|
26 |
|
ovex |
|
27 |
25 3 26
|
fvmpt |
|
28 |
27
|
ad2antrl |
|
29 |
|
oveq1 |
|
30 |
|
ovex |
|
31 |
29 3 30
|
fvmpt |
|
32 |
31
|
ad2antll |
|
33 |
28 32
|
oveq12d |
|
34 |
18 24 33
|
3eqtr4d |
|
35 |
|
fnfvelrn |
|
36 |
9 19 35
|
syl2an |
|
37 |
34 36
|
eqeltrrd |
|
38 |
37
|
anassrs |
|
39 |
38
|
ralrimiva |
|
40 |
|
oveq2 |
|
41 |
40
|
eleq1d |
|
42 |
41
|
ralrn |
|
43 |
9 42
|
syl |
|
44 |
43
|
adantr |
|
45 |
39 44
|
mpbird |
|
46 |
|
eqid |
|
47 |
1 2 46
|
mulgneg |
|
48 |
47
|
3expa |
|
49 |
48
|
an32s |
|
50 |
|
znegcl |
|
51 |
50
|
adantl |
|
52 |
|
oveq1 |
|
53 |
|
ovex |
|
54 |
52 3 53
|
fvmpt |
|
55 |
51 54
|
syl |
|
56 |
27
|
adantl |
|
57 |
56
|
fveq2d |
|
58 |
49 55 57
|
3eqtr4d |
|
59 |
|
fnfvelrn |
|
60 |
9 50 59
|
syl2an |
|
61 |
58 60
|
eqeltrrd |
|
62 |
45 61
|
jca |
|
63 |
62
|
ralrimiva |
|
64 |
|
oveq1 |
|
65 |
64
|
eleq1d |
|
66 |
65
|
ralbidv |
|
67 |
|
fveq2 |
|
68 |
67
|
eleq1d |
|
69 |
66 68
|
anbi12d |
|
70 |
69
|
ralrn |
|
71 |
9 70
|
syl |
|
72 |
63 71
|
mpbird |
|
73 |
1 15 46
|
issubg2 |
|
74 |
73
|
adantr |
|
75 |
8 13 72 74
|
mpbir3and |
|
76 |
|
oveq1 |
|
77 |
|
ovex |
|
78 |
76 3 77
|
fvmpt |
|
79 |
10 78
|
ax-mp |
|
80 |
1 2
|
mulg1 |
|
81 |
80
|
adantl |
|
82 |
79 81
|
eqtrid |
|
83 |
82 12
|
eqeltrrd |
|
84 |
75 83
|
jca |
|