Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubgcyg.x |
|
2 |
|
cycsubgcyg.t |
|
3 |
|
cycsubgcyg.s |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 2 6
|
cycsubgcl |
|
8 |
7
|
simpld |
|
9 |
3 8
|
eqeltrid |
|
10 |
|
eqid |
|
11 |
10
|
subggrp |
|
12 |
9 11
|
syl |
|
13 |
7
|
simprd |
|
14 |
13 3
|
eleqtrrdi |
|
15 |
10
|
subgbas |
|
16 |
9 15
|
syl |
|
17 |
14 16
|
eleqtrd |
|
18 |
16
|
eleq2d |
|
19 |
18
|
biimpar |
|
20 |
|
simpr |
|
21 |
20 3
|
eleqtrdi |
|
22 |
|
oveq1 |
|
23 |
22
|
cbvmptv |
|
24 |
|
ovex |
|
25 |
23 24
|
elrnmpti |
|
26 |
21 25
|
sylib |
|
27 |
9
|
ad2antrr |
|
28 |
|
simpr |
|
29 |
14
|
ad2antrr |
|
30 |
2 10 5
|
subgmulg |
|
31 |
27 28 29 30
|
syl3anc |
|
32 |
31
|
eqeq2d |
|
33 |
32
|
rexbidva |
|
34 |
26 33
|
mpbid |
|
35 |
19 34
|
syldan |
|
36 |
4 5 12 17 35
|
iscygd |
|