Metamath Proof Explorer


Theorem cycsubgcyg2

Description: The cyclic subgroup generated by A is a cyclic group. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses cycsubgcyg2.b B = Base G
cycsubgcyg2.k K = mrCls SubGrp G
Assertion cycsubgcyg2 G Grp A B G 𝑠 K A CycGrp

Proof

Step Hyp Ref Expression
1 cycsubgcyg2.b B = Base G
2 cycsubgcyg2.k K = mrCls SubGrp G
3 eqid G = G
4 eqid n n G A = n n G A
5 1 3 4 2 cycsubg2 G Grp A B K A = ran n n G A
6 5 oveq2d G Grp A B G 𝑠 K A = G 𝑠 ran n n G A
7 eqid ran n n G A = ran n n G A
8 1 3 7 cycsubgcyg G Grp A B G 𝑠 ran n n G A CycGrp
9 6 8 eqeltrd G Grp A B G 𝑠 K A CycGrp