Metamath Proof Explorer


Theorem cycsubmcmn

Description: The set of nonnegative integer powers of an element A of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024)

Ref Expression
Hypotheses cycsubmcmn.b B = Base G
cycsubmcmn.t · ˙ = G
cycsubmcmn.f F = x 0 x · ˙ A
cycsubmcmn.c C = ran F
Assertion cycsubmcmn G Mnd A B G 𝑠 C CMnd

Proof

Step Hyp Ref Expression
1 cycsubmcmn.b B = Base G
2 cycsubmcmn.t · ˙ = G
3 cycsubmcmn.f F = x 0 x · ˙ A
4 cycsubmcmn.c C = ran F
5 1 2 3 4 cycsubm G Mnd A B C SubMnd G
6 eqid 0 G = 0 G
7 eqid G 𝑠 C = G 𝑠 C
8 1 6 7 issubm2 G Mnd C SubMnd G C B 0 G C G 𝑠 C Mnd
9 8 adantr G Mnd A B C SubMnd G C B 0 G C G 𝑠 C Mnd
10 simp3 C B 0 G C G 𝑠 C Mnd G 𝑠 C Mnd
11 9 10 syl6bi G Mnd A B C SubMnd G G 𝑠 C Mnd
12 5 11 mpd G Mnd A B G 𝑠 C Mnd
13 7 submbas C SubMnd G C = Base G 𝑠 C
14 5 13 syl G Mnd A B C = Base G 𝑠 C
15 14 eqcomd G Mnd A B Base G 𝑠 C = C
16 15 eleq2d G Mnd A B x Base G 𝑠 C x C
17 15 eleq2d G Mnd A B y Base G 𝑠 C y C
18 16 17 anbi12d G Mnd A B x Base G 𝑠 C y Base G 𝑠 C x C y C
19 eqid + G = + G
20 1 2 3 4 19 cycsubmcom G Mnd A B x C y C x + G y = y + G x
21 5 adantr G Mnd A B x C y C C SubMnd G
22 7 19 ressplusg C SubMnd G + G = + G 𝑠 C
23 22 eqcomd C SubMnd G + G 𝑠 C = + G
24 23 oveqd C SubMnd G x + G 𝑠 C y = x + G y
25 23 oveqd C SubMnd G y + G 𝑠 C x = y + G x
26 24 25 eqeq12d C SubMnd G x + G 𝑠 C y = y + G 𝑠 C x x + G y = y + G x
27 21 26 syl G Mnd A B x C y C x + G 𝑠 C y = y + G 𝑠 C x x + G y = y + G x
28 20 27 mpbird G Mnd A B x C y C x + G 𝑠 C y = y + G 𝑠 C x
29 28 ex G Mnd A B x C y C x + G 𝑠 C y = y + G 𝑠 C x
30 18 29 sylbid G Mnd A B x Base G 𝑠 C y Base G 𝑠 C x + G 𝑠 C y = y + G 𝑠 C x
31 30 ralrimivv G Mnd A B x Base G 𝑠 C y Base G 𝑠 C x + G 𝑠 C y = y + G 𝑠 C x
32 eqid Base G 𝑠 C = Base G 𝑠 C
33 eqid + G 𝑠 C = + G 𝑠 C
34 32 33 iscmn G 𝑠 C CMnd G 𝑠 C Mnd x Base G 𝑠 C y Base G 𝑠 C x + G 𝑠 C y = y + G 𝑠 C x
35 12 31 34 sylanbrc G Mnd A B G 𝑠 C CMnd