Metamath Proof Explorer


Theorem cygctb

Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypothesis cygctb.1 B = Base G
Assertion cygctb G CycGrp B ω

Proof

Step Hyp Ref Expression
1 cygctb.1 B = Base G
2 eqid G = G
3 1 2 iscyg G CycGrp G Grp x B ran n n G x = B
4 3 simprbi G CycGrp x B ran n n G x = B
5 ovex n G x V
6 eqid n n G x = n n G x
7 5 6 fnmpti n n G x Fn
8 df-fo n n G x : onto B n n G x Fn ran n n G x = B
9 7 8 mpbiran n n G x : onto B ran n n G x = B
10 omelon ω On
11 onenon ω On ω dom card
12 10 11 ax-mp ω dom card
13 znnen
14 nnenom ω
15 13 14 entri ω
16 ennum ω dom card ω dom card
17 15 16 ax-mp dom card ω dom card
18 12 17 mpbir dom card
19 fodomnum dom card n n G x : onto B B
20 18 19 mp1i G CycGrp x B n n G x : onto B B
21 domentr B ω B ω
22 15 21 mpan2 B B ω
23 20 22 syl6 G CycGrp x B n n G x : onto B B ω
24 9 23 syl5bir G CycGrp x B ran n n G x = B B ω
25 24 rexlimdva G CycGrp x B ran n n G x = B B ω
26 4 25 mpd G CycGrp B ω