| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscyg.1 |
|
| 2 |
|
iscyg.2 |
|
| 3 |
|
iscyg3.e |
|
| 4 |
|
cyggeninv.n |
|
| 5 |
1 2 3
|
iscyggen2 |
|
| 6 |
5
|
simprbda |
|
| 7 |
1 4
|
grpinvcl |
|
| 8 |
6 7
|
syldan |
|
| 9 |
5
|
simplbda |
|
| 10 |
|
oveq1 |
|
| 11 |
10
|
eqeq2d |
|
| 12 |
11
|
cbvrexvw |
|
| 13 |
|
znegcl |
|
| 14 |
13
|
adantl |
|
| 15 |
|
simpr |
|
| 16 |
15
|
zcnd |
|
| 17 |
16
|
negnegd |
|
| 18 |
17
|
oveq1d |
|
| 19 |
|
simplll |
|
| 20 |
6
|
ad2antrr |
|
| 21 |
1 2 4
|
mulgneg2 |
|
| 22 |
19 14 20 21
|
syl3anc |
|
| 23 |
18 22
|
eqtr3d |
|
| 24 |
|
oveq1 |
|
| 25 |
24
|
rspceeqv |
|
| 26 |
14 23 25
|
syl2anc |
|
| 27 |
|
eqeq1 |
|
| 28 |
27
|
rexbidv |
|
| 29 |
26 28
|
syl5ibrcom |
|
| 30 |
29
|
rexlimdva |
|
| 31 |
12 30
|
biimtrid |
|
| 32 |
31
|
ralimdva |
|
| 33 |
9 32
|
mpd |
|
| 34 |
1 2 3
|
iscyggen2 |
|
| 35 |
34
|
adantr |
|
| 36 |
8 33 35
|
mpbir2and |
|